www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzwert 2 Veränderlicher
Grenzwert 2 Veränderlicher < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert 2 Veränderlicher: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mo 22.06.2015
Autor: memfail

Aufgabe
Berechnen Sie die Grenzwerte:
[mm] f(x,y)=\bruch{x*sin(y)}{x^{2}+y^{2}} [/mm]
[mm] \limes_{x\rightarrow 0}\limes_{y\rightarrow 0}f(x,y); [/mm]
[mm] \limes_{y\rightarrow 0}\limes_{x\rightarrow 0}f(x,y); [/mm]
[mm] \limes_{(x,y)\rightarrow (0,0)}f(x,y); [/mm]

Hallo,

Ich habe bei der o.g. Aufgabe folgendes Problem:

[mm] \limes_{y\rightarrow 0}f(x,y) [/mm] ergibt ja 0, [mm] \limes_{x\rightarrow 0} [/mm] f(x,y) ergibt ebenfalls null.
Somit müssten die beiden [mm] \limes_{x\rightarrow 0}\limes_{y\rightarrow 0}f(x,y); [/mm] und [mm] \limes_{y\rightarrow 0}\limes_{x\rightarrow 0}f(x,y); [/mm] ja auch jeweils gegen null gehen.

Ich würde doch dann davon ausgehen, dass [mm] \limes_{(x,y)\rightarrow (0,0)}f(x,y) [/mm] ebenfalls null ergibt.
Leider ergibt das nach meinen Infos, dass es keinen Grenzwert gibt. (WolframAlpha) :D

Warum ist das so und wie berechne ich das?


1 Versuch: [mm] \limes_{(x,y)\rightarrow (0,0)}f(x,y) [/mm] => [mm] \limes_{(x)\rightarrow 0}f(x,\alpha [/mm] x)  => [mm] \bruch{sin(\alpha x)}{x(1+\alpha ^{2})} [/mm]
und nu? Wie kann ich jetzt weiterrechnen? (Ich will hier ein gegenbeispiel bringen, also das für ein [mm] \alpha [/mm] der grenzwert nicht null ist.....

2. Versuch -> umformen in Polarkoordinatenform
[mm] \limes_{r \rightarrow 0} \bruch{cos \varphi * sin(r*sin \varphi )}{r} [/mm]
und wie würde es hier weitergehen? auch hier möchte ich zeigen, dass selbst wenn r gegen null geht NICHT null rauskommt....

Ich danke für eure Zeit

Gruß memfail
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert 2 Veränderlicher: Antwort
Status: (Antwort) fertig Status 
Datum: 05:07 Di 23.06.2015
Autor: fred97

Zu Versuch 1: wähle [mm] \alpha=1 [/mm]

Zu Versuch 2: wenn Du Dich an Versuch 1 orientierst, so sollte es mit [mm] $\varphi=\pi/4$ [/mm] klappen.

FRED

Bezug
                
Bezug
Grenzwert 2 Veränderlicher: Danke, wie geht das?
Status: (Frage) überfällig Status 
Datum: 21:05 Mi 24.06.2015
Autor: memfail

Hallo,

und erstmal vielen Dank für die Antwort.

Aber wie komme ich z.b. auf solch eine Antwort?
Gibt es da schlauere Möglichkeiten als scharfes Hingucken?

Viele Grüße

Bezug
                        
Bezug
Grenzwert 2 Veränderlicher: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 28.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de