Grenzwert arithmet. Mittel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:27 Mi 12.12.2007 | Autor: | niandis |
Aufgabe | Sei [mm] (x_n) [/mm] eine Folge in [mm] \IR [/mm] mit [mm] x_n \to [/mm] x. Sei [mm] y_n [/mm] = [mm] \bruch{1}{n} \summe_{j=1}^{n}x_j [/mm] für alle n [mm] \in \IN. [/mm] Zeigen Sie, dass [mm] y_n \to [/mm] x.
Hinweis: Überlegen Sie, dass gilt
[mm] y_n [/mm] - x = [mm] \bruch{1}{n} \summe_{j=1}^{n}(x_j [/mm] - x).
Spalten Sie die rechte Seite dieser Gleichung für gegebenes [mm] \varepsilon [/mm] > 0 in zwei Summen auf. Sie werden feststellen, dass [mm] (y_n) [/mm] 'langsamer' als [mm] (x_n) [/mm] konvergiert, d.h., Sie werden n = [mm] n_\varepsilon [/mm] für die Folge [mm] (y_n) [/mm] (deutlich) größer wählen müssen, als für [mm] (x_n). [/mm] |
Hallo,
ich soll oben angegebene Aufgabe lösen. Allerdings verstehe ich sie nicht ganz.
Als erstes verstehe ich nicht wieso ich durch den hingewiesenen Lösungsweg zeige, dass [mm] y_n \to [/mm] x. Die bisherigen Wege, die ich ich kenne, um einen Grenzwert zu bestimmen oder zu zeigen haben damit absolut keine Ähnlichkeit und ich kann selbst auch keine Logik erkennen. Kann mir vielleicht jemand den Zusammenhang erklären?
Dann verstehe ich auch nicht was überhaupt 'langsamer' konvergieren heißen soll?!
Es wäre super wenn mir wär helfen könnte!
Danke schonmal!
Lg
|
|
|
|
Hi,
> Sei [mm](x_n)[/mm] eine Folge in [mm]\IR[/mm] mit [mm]x_n \to[/mm] x. Sei [mm]y_n[/mm] =
> [mm]\bruch{1}{n} \summe_{j=1}^{n}x_j[/mm] für alle n [mm]\in \IN.[/mm] Zeigen
> Sie, dass [mm]y_n \to[/mm] x.
>
> Hinweis: Überlegen Sie, dass gilt
> [mm]y_n[/mm] - x = [mm]\bruch{1}{n} \summe_{j=1}^{n}(x_j[/mm] - x).
> Spalten Sie die rechte Seite dieser Gleichung für
> gegebenes [mm]\varepsilon[/mm] > 0 in zwei Summen auf. Sie werden
> feststellen, dass [mm](y_n)[/mm] 'langsamer' als [mm](x_n)[/mm] konvergiert,
> d.h., Sie werden n = [mm]n_\varepsilon[/mm] für die Folge [mm](y_n)[/mm]
> (deutlich) größer wählen müssen, als für [mm](x_n).[/mm]
> Hallo,
> ich soll oben angegebene Aufgabe lösen. Allerdings
> verstehe ich sie nicht ganz.
> Als erstes verstehe ich nicht wieso ich durch den
> hingewiesenen Lösungsweg zeige, dass [mm]y_n \to[/mm] x. Die
> bisherigen Wege, die ich ich kenne, um einen Grenzwert zu
> bestimmen oder zu zeigen haben damit absolut keine
> Ähnlichkeit und ich kann selbst auch keine Logik erkennen.
> Kann mir vielleicht jemand den Zusammenhang erklären?
> Dann verstehe ich auch nicht was überhaupt 'langsamer'
> konvergieren heißen soll?!
> Es wäre super wenn mir wär helfen könnte!
> Danke schonmal!
> Lg
>
[mm] $y_n\to [/mm] x$ heisst doch nichts anderes als dass [mm] $|y_n-x|$ [/mm] beliebig klein wird fuer grosse n. formal musst du zeigen, dass es zu gegebenem [mm] $\epsilon$ [/mm] ein [mm] $n_0$ [/mm] gibt, so dass
[mm] $|y_n-x|<\epsilon$ [/mm] fuer [mm] $n>n_0$
[/mm]
nach dem tip (+dreiecks-ungl.) gilt aber
[mm] $|y_n-x|\le \frac1n \sum_{j=1}^n |x_j-x|$
[/mm]
da [mm] x_j [/mm] gegen x konv. weisst du, dass fuer grosse j die summanden sehr klein werden. deswegen macht es sinn, zu ueberlegen fuer welches [mm] n_1 [/mm] zb. gilt
[mm] $|x_j-x|<\epsilon/2$ [/mm] fuer alle [mm] $n>n_1$
[/mm]
dann kannst du die summe aufspalten in 1.) alle summanden bis [mm] n_1 [/mm] und 2.) alle anderen.
genug tips, jetzt versuchs mal selber...
gruss
matthias
|
|
|
|