Grenzwert bei Häufungspunkt < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:44 Di 10.07.2007 | Autor: | ANTONIO |
Aufgabe | zu beweisen für [mm] c \in\IR\[/mm]: c ist Häufungspunkt von D => es gibt eine Folge [mm](x_n)_{n\in\IN}[/mm] mit 1.) [mm]x_n\in\ D [/mm], 2.) [mm]x_n \not= c [/mm], 3.) c = [mm] \limes_{n \to \infty}x_n [/mm] |
In meinem Brückenkurs der Fernuni Hagen wird als Lösung gegeben: [mm] x_n \in U_\bruch{1}{n} \left( c \right) [/mm]
wobei U als Umgebung definiert wird. Diese x bilden eine Folge; es wird ein [mm] n_\epsilon \in \IN [/mm] gewählt mit [mm] n_\epsilon > \bruch{1}{\epsilon}[/mm] Details des Lös.weges lasse ich hier weg
Ich frage mich ob etwas mit folgendem einfacheren Weg falsch ist:
[mm] \delta_1 [/mm] = 1, [mm] \delta_2 = \bruch{\delta_1}{2} , \delta_{n+1} = \bruch{\delta_n}{2} ; x_1 [/mm] sei ein Element von [mm] D \cap U_1 \left( c \right) \setminus \left\{ c \right\} \ne \emptyset [/mm] , usw., [mm] x_n [/mm] sei ein Element von [mm] D \cap U_n \left( c \right) \setminus \left\{ c \right\} \ne \emptyset [/mm]
zu 1.) laut Def. Häufungspunkt ist [mm] x_n \in \left( D \cap U_n \left( c \right) \setminus \left\{ c \right\} \ne \emptyset \right) [/mm]
=> 2.) [mm] x_n \ne c [/mm]
zu 3.): Forderung: [mm] \left| x_n - c \right| < \epsilon [/mm] für beliebiges [mm] \epsilon [/mm] > 0 für alle n > [mm] n_\epsilon [/mm]
man setze [mm] \epsilon [/mm] := [mm] \delta_{n_\epsilon} [/mm];
da laut Definition [mm] \left| X_{n+1} - c \right| < \bruch{\delta_n}{2} = \bruch{\epsilon}{2} [/mm] gilt auch [mm] \left| x_{n_\epsilon +1} - c \right| < \bruch{\epsilon}{2} < \epsilon [/mm] da [mm] \epsilon [/mm] > 0 und es gilt allgemein [mm] \left| x_{n_\epsilon +n} - c \right| < .... < \bruch{\epsilon}{2} < \epsilon [/mm] d.h. Bedingung für alle n > [mm] n_\epsilon [/mm] erfüllt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:51 Di 10.07.2007 | Autor: | leduart |
Hallo
ich hab nicht genau verstanden wozu du [mm] \delta_n=1/2^n [/mm] definiert hast.
Wenn du mit [mm] U_n [/mm] die Umgebung [mm] U_{\delta_n} [/mm] gemeint hast hast du gegenüber dem "alten" Beweis nur 1/n durch [mm] 1/2^n [/mm] ersetzt. das ist soweit möglich.
Was sicher falsch ist ist der Satz : setze [mm] \epsilon=...; [/mm] dieser Satz darf nie vorkommen, sondern man muss zu jedem BELIEBIGEN [mm] \epsilon [/mm] ein n finden sodas...
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:42 Mi 11.07.2007 | Autor: | ANTONIO |
vielen Dank so weit,
ich habe in der Tat [mm] U_\delta{_n} [/mm] gemeint. Offen bleibt für mich noch, ob ich denn einen gültigen Beweis habe wenn ich außerdem die Formulierung "setze [mm] \epsilon [/mm]:... ändere zu: bei beliebigem [mm] \epsilon [/mm] wähle n so, daß gilt [mm] \delta_n <= \epsilon [/mm]
ich denke, damit setze ich voraus, daß die Folge [mm] \left( \bruch{1}{2} \right) ^n [/mm] gegen 0 konvergiert (Beweis dafür laß ich hier mal weg). Was Deine Frage beantwortet was ich damit will. Also insofern ist der Beweis doch umständlicher als ich dachte aber möglich oder ?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:01 Mi 11.07.2007 | Autor: | leduart |
Hallo
schon besser, aber du musst ein n angeben, also wähle [mm] x_n_{\epsilon} [/mm] aus U so dass [mm] 1/2^n<1/\epsilon, [/mm] dann kommst du glaub ich hin. nur was hast du mit [mm] 1/2^n [/mm] gegenüber der einfacheren Nullfolge 1/n gewonnen, der Beweis läuft doch sonst wie dein alter, und du musst jetzt noch aus [mm] 1/2^n<1/\epsilon [/mm] auf n schliessen. mit log ist das möglich, aber warum? an der Struktur des Beweises sehe ich keine Vereinfachung.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:03 Mi 11.07.2007 | Autor: | ANTONIO |
alles klar, vielen dank noch mal !
|
|
|
|