www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:54 Di 07.11.2006
Autor: hiltrud

Aufgabe
bestimmen sie-falls existiert- den grenzwert der folge:

[mm] \wurzel{n+1} [/mm] -  [mm] \wurzel{n} [/mm]

hallo, ich komme ab einem bestimmten punkt nicht weiter.

ich habe es nun erstmal erweitert und dann komme ich wenn ich das auch noch ausmultipliziere  ja auf:

[mm] \bruch{1}{\wurzel{n+1} - \wurzel{n}}. [/mm]

ab da komme ich aber nicht mehr weiter. ich habe nun erst gedacht ich könnte argumentieren das
[mm] \bruch{1}{\wurzel{n+1} - \wurzel{n}} [/mm] < [mm] \bruch{1}{n} [/mm] daher ist der grenzwert. mir ist aber aufgefallen dass das nicht stimmt, da [mm] \bruch{1}{\wurzel{n+1} - \wurzel{n}} [/mm] > [mm] \bruch{1}{n} [/mm] ist.
aber nun weiß ich nicht weiter. ich hoffe mir kann jemand helfen. ist diesmal wirklich wichtig, da ich die aufgabe vorstellen muss. :-(

        
Bezug
Grenzwert bestimmen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 Di 07.11.2006
Autor: vvz-master

Ich denke dass [mm] \bruch{1}{\wurzel{n+1}+\wurzel{n}} < \bruch{1} {n}[/mm], da ja [mm]\wurzel{n+1}+\wurzel{n} > n[/mm]!

Bezug
        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 07.11.2006
Autor: DesterX

Hallo!

Du hast einen Fehler beim Erweitern gemacht, vielleicht bist du dann schon am Ziel:
[mm] \wurzel{n+1} [/mm] -  [mm] \wurzel{n} [/mm] = [mm] \bruch{(\wurzel{n+1} - \wurzel{n}) * (\wurzel{n+1} + \wurzel{n})}{\wurzel{n+1}+ \wurzel{n}} [/mm] = [mm] \bruch{1}{\wurzel{n+1} + \wurzel{n}} [/mm] < [mm] \bruch{1}{2*\wurzel{n}} [/mm]

Nun klar?

Gruß
Dester

Bezug
                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 07.11.2006
Autor: hiltrud

also kann ich sagen, da [mm] \bruch{1}{\wurzel{n+1}+ \wurzel{n}} [/mm] < [mm] \bruch{1}{2* \wurzel{n}} [/mm] das dies gegen null konvergiert, da [mm] \bruch{1}{2* \wurzel{n}} [/mm] gegen null konvergiert und das [mm] \bruch{1}{\wurzel{n+1}+ \wurzel{n}} [/mm] ja kleiner ist und dies deswegen auch gegen null konvergiert?

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Di 07.11.2006
Autor: DesterX

[ok]
Genau so ist es !
Gruß
Dester

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de