www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert beweisen
Grenzwert beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 23.01.2007
Autor: chipsy_101

Aufgabe
Beweisen Sie, dass die angegebenen Funktionen in dem jeweiligen Limes den Grenzwert 0 besitzen
[mm] a)\limes_{x \to \infty}x^k e^{-\alpha x} [/mm] =0,   [mm] \alpha,k [/mm] >0
[mm] b)\limes_{x \to \infty}x^{-\alpha}lnx [/mm] =0,    [mm] \alpha [/mm] >0
[mm] c)\limes_{x \to \0}x^{\alpha}lnx [/mm] =0,      [mm] \alpha [/mm] >0
zu c) (x->0+)    

Hallo zusammen,

ich komme mal wieder nicht weiter bei dieser Aufgabe! Ich habe leider absolut keine Idee!
Hat mir vielleicht jemand einen Ansatz damit ich dann weitermachen kann

Ich wäre euch super dankbar für jeden Ansatz!

Viele Grüße
chipsy_101

        
Bezug
Grenzwert beweisen: Grenzwerte
Status: (Antwort) fertig Status 
Datum: 19:22 Di 23.01.2007
Autor: clwoe

Hi,

man nutzt hier das Verhalten der Exponentialfunktion und der Logarithmusfunktion aus, um das zu zeigen. Keine Funktion wächst schneller und fällt schneller als die e-Funktion und keine andere Funktion wächst langsamer und fällt langsamer als die ln-Funktion. Die kann man als Argumentation verwenden.

Das bedeutet:

[mm] \limes_{x\rightarrow\infty}x^{k}e^{-\alpha x}=\limes_{x\rightarrow\infty}x^{k}\bruch{1}{\underbrace{e^{\alpha x}}_{\to 0}}=0 [/mm] Die e-Funktion geht wesentlich schneller gegen unendlich und somit der Bruch gegen 0 als die Funktion [mm] x^{k} [/mm] gegen unendlich geht.

b)
[mm] \limes_{x\rightarrow\infty}x^{-\alpha}\ln{x}=\limes_{x\rightarrow\infty}\bruch{1}{\underbrace{x^{\alpha }}_{\to 0}}\ln{x}=0, [/mm] da [mm] x^{\alpha} [/mm] wesentlich schneller gegen unendlich geht und somit der Bruch gegen 0 als die ln-Funktion gegen unendlich geht.

c)
[mm] \limes_{x\rightarrow 0}\underbrace{x^{\alpha }}_{\to 0}\underbrace{\ln{x}}_{\to -\infty}=0 [/mm]
selbe Begründung wie oben auch.

Gruß,
clwoe

Bezug
                
Bezug
Grenzwert beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Di 23.01.2007
Autor: chipsy_101

Vielen vielen Dank für deine Hilfe!
Habs verstanden!!!!!

Daaaankeschön!

Viele Grüße
chipsy_101



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de