www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert einer Folge
Grenzwert einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Idee/Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:18 Sa 13.02.2016
Autor: onooosch

Aufgabe
[mm] a_{n}:= \left( 1-\bruch{i*\pi}{3n} \right)^{3n} [/mm]

Hallo!
Danke für die Hilfe!
Ich stehe irgendwie auf dem Schlauch!
Mein Ansatz sieht so aus:

[mm] e^{3n*ln\left(1-\bruch{i*\pi}{3n}\right)} = e^{3n\left(ln\left|1-\bruch{i*\pi}{3n}\right|+i*arg\left(1-\bruch{i*\pi}{3n}\right)\right)} [/mm]

da im Betrag für unendlich große n eine 1 steht, ist der ln von 1=0.

wenn ich das i rausziehe, habe ich folgenden Ausdruck:

[mm] e^{3ni\left(arg\left(1-\bruch{i*\pi}{3n}\right)\right)} [/mm]

wenn ich jetzt bei arg das n gegen unendlich laufen lasse, dann kommt bei arg(1) 0 raus. und somit steht da

[mm] e^{0} [/mm]

somit kommt als Grenzwert 1 raus.

WolframAlpha sagt aber -1.

bin für jede Hilfe dankbar!

        
Bezug
Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Sa 13.02.2016
Autor: sinnlos123

woher weißt du denn dass (-i)/n irgendwann 0 wird?

Bezug
                
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 13.02.2016
Autor: onooosch

auf welche Stelle beziehst du dich? Verstehe die Frage nicht ganz.

Bezug
                        
Bezug
Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Sa 13.02.2016
Autor: sinnlos123

Naja, du machst arg(1)

das heißt ja, du setzt voraus das i geteilt durch n, für groß genuge n irgendwann 0 wird (pi ist eh ne normale Zahl, d.h. die wird ganz sicher gen 0 wenn man die durch was großes teilt, das heißt intressiert uns nich)

also woher weißt du das i/n=0?

Bezug
                                
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Sa 13.02.2016
Autor: Gonozal_IX

Hiho,

es ist |i|=1 uns damit $0 [mm] \le |\bruch{i}{n}| \le \bruch{1}{n} [/mm] $

Grenzwertbildung liefert das Gewünschte

Gruß,
Gono

Bezug
        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Sa 13.02.2016
Autor: Gonozal_IX

Hiho,

du kannst doch nich die Klammer gesondert betrachten wenn davor noch ein n steht. Nach deiner Theorie wäre ja auch [mm] $\lim_{n\to\infty} [/mm] 1 = 0$ denn [mm] $1=n\frac{1}{n}$ [/mm] und [mm] $\frac{1}{n}$ [/mm] geht gegen Null also steht da ja Null

Aber zur Aufgabe: Es ist [mm] $\lim_{n\to\infty} [/mm] (1+ [mm] \frac{z}{n})^n [/mm] = [mm] e^z$ [/mm] für komplexe z.

Gruß,
Gono

Bezug
        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 03:28 So 14.02.2016
Autor: HJKweseleit

[mm] \left( 1-\bruch{i*\pi}{3n} \right)^{3n} [/mm]

Setze [mm] m=\bruch{3n*i}{\pi} \gdw 3n=\bruch{\pi m}{i} \Rightarrow [/mm]

[mm] \left( 1-\bruch{i*\pi}{3n} \right)^{3n}=\left( 1-\bruch{i*\pi i}{\pi m} \right)^{\bruch{\pi m}{i}}=\left( 1+\bruch{1}{m} \right)^{m\bruch{\pi}{i}}\mapsto e^{\bruch{\pi}{i}}=e^{-\pi i}=-1 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de