www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert einer Funktion
Grenzwert einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Funktion: bsp
Status: (Frage) beantwortet Status 
Datum: 16:29 So 26.11.2006
Autor: Hellfreezer

Aufgabe
Bestimmen Sie die links- bzw. rechtsseitigen Grenzwerte von

f(x)=exp(x+[x])

für [mm] x\to0, [/mm] wobei [x] die größte ganze Zahl kleiner oder gleich x bezeichnet.

guten abend!

könnte mir bitte jemand sagen wie ich das rechnen soll. ich weiß schon was der grenzwert ist, aber bei diesem bsp hab ich keinen plan...

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 26.11.2006
Autor: felix024


> Bestimmen Sie die links- bzw. rechtsseitigen Grenzwerte
> von
>  
> f(x)=exp(x+[x])
>  
> für [mm]x\to0,[/mm] wobei [x] die größte ganze Zahl kleiner oder
> gleich x bezeichnet.
>  guten abend!
>  
> könnte mir bitte jemand sagen wie ich das rechnen soll. ich
> weiß schon was der grenzwert ist, aber bei diesem bsp hab
> ich keinen plan...
>  

Hallo,

ich erkläre es dir mal am Beispiel des linksseitigen Limes. Ich denke ihr habt behandelt, dass die Exponentialfunktion stetig ist, dann ist sie auch folgenstetig, also für [mm] x_n->x [/mm] gilt [mm] exp(x_n)->exp(x). [/mm] Die Frage ist also nach dem linksseitigen Limes von x+[x] für x gegen 0 für x<0. Außerdem kann man annehmen, dass gilt x>-1 (da der Limes gegen 0 interessiert). Da dann gilt -1<x<0, gilt x+[x]=x-1 gefragt ist also der Limes von x-1 für x->0, x<0. Der ist aber -1, also ist der gesuchte linksseitige Limes exp(-1).

Gruß
Felix

Bezug
                
Bezug
Grenzwert einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 26.11.2006
Autor: Hellfreezer

dankeschön für die antwort

....gefragt ist also der Limes von x-1 für x->0, x<0. Der ist aber -1, also ist der gesuchte linksseitige Limes exp(-1).

es wird also der limes von x-1 gesucht (das vorige versteh ich noch). bei dem letzten rest komm ich aber nicht mit...
könntest du mir bitte nochmal erklären wie dann zum ergebnis kommst?

danke

Bezug
                        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 26.11.2006
Autor: felix024


> dankeschön für die antwort
>  
> ....gefragt ist also der Limes von x-1 für x->0, x<0. Der
> ist aber -1, also ist der gesuchte linksseitige Limes
> exp(-1).
>
> es wird also der limes von x-1 gesucht (das vorige versteh
> ich noch). bei dem letzten rest komm ich aber nicht mit...
>  könntest du mir bitte nochmal erklären wie dann zum
> ergebnis kommst?

Hallo,

die Idee ist die Stetigkeit auszunutzen. Vielleicht ist es einfach, wenn man den Grenzwertprozeß erstmal für eine Fogle betrachtet. Dann hast Du eine Folge [mm] x_n [/mm] gegeben und suchst den Grenzwert von [mm] exp(x_n). [/mm] Da die Exponentialfunktion aber stetig ist, reicht es den Grenzwert der Folge zu bestimmen, also das x mit [mm] x_n->x, [/mm] da dann aufgrund der Stetigkeit gilt [mm] exp(x_n)->exp(x). [/mm]
Im vorliegenden Beispiel (für den linksseitigen Limes) suchst du den Grenzwert von x-1 für x->0 mit x<0. Dieser ist -1 Damit gilt für den linksseitigen Limes von exp(x-[x])=exp(-1). Ich hoffe, dass es jetzt ein bißchen klarer wird.

Gruß
Felix

Bezug
                                
Bezug
Grenzwert einer Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:47 So 26.11.2006
Autor: Hellfreezer

also
ich such den grenzwert von x-1...

als vorraussetzung haben wir gesagt wenn [mm] x_n\ge [/mm] x dann ist [mm] exp(x_n)\ge [/mm] exp(x). (versteh ich)

auf dieses bsp angew.
wenn [mm] x\ge [/mm] 0  (=ist sozusagen [mm] x_n) [/mm] dann ist x<0  (warum nicht [mm] x\le [/mm] 0 ?)
( bis aufs [mm] \le [/mm] verstanden)

wie man jetzt auf die lsg exp(-1) kommt versteh ich nicht, bzw. wie man das x-1 in die "stetigkeitsbedingungen" (wenn [mm] x_n\ge [/mm] x dann ist [mm] exp(x_n)\ge [/mm] exp(x)) einbringt ist mir unklar...

[mm] e^0=1 [/mm]

vielen dank für deine mühe!!!

Bezug
                                        
Bezug
Grenzwert einer Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 28.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de