www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert einer Zahlenfolge
Grenzwert einer Zahlenfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Zahlenfolge: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 30.06.2008
Autor: carl1990

Aufgabe
Man berechne mittels [mm] \limes_{n\rightarrow\infty}[1+(\bruch{a}{n})]^n=e^a [/mm]
en Grenzwert lim [mm] a_{n} [/mm] , falls [mm] a_{n} [/mm] jeweils gleich ist:

[mm] [3-n^{-1/2}][1+3n^{-1}]^n[7-21(100n)^{-1}][6+n^{-1000}]^{-1}[1+n^{-1}]^{-87}[1-n^{-1}]^{-n} [/mm]

mein Ansatz:

Faktoren [mm] [1+3n^{-1}]^n [/mm] = [mm] e^{\bruch{1}{3}} [/mm] ,  [1-n^(-1)]^(-n) = e

[mm] [3-n^{-1/2}]e^{\bruch{1}{3}} [/mm] [7-21(100n)^(-1)][6+n^(-1000)]^(-1)[1+n^(-1)]^(-87)e

kann mir jemand weiter helfen, wie ich die anderen Faktoren vereinfache?
Das Endergebnis muss [mm] (7/2)e^4 [/mm] sein.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke


        
Bezug
Grenzwert einer Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mo 30.06.2008
Autor: Al-Chwarizmi


> Man berechne mittels
> [mm]\limes_{n\rightarrow\infty}[1+(\bruch{a}{n})]^n=e^a[/mm]
> den Grenzwert lim [mm]a_{n}[/mm] , falls [mm]a_{n}[/mm] jeweils gleich ist:
>  
> [mm][3-n^{-1/2}][1+3n^{-1}]^n[7-21(100n)^{-1}][6+n^{-1000}]^{-1}[1+n^{-1}]^{-87}[1-n^{-1}]^{-n}[/mm]
>  mein Ansatz:
>
> Faktoren [mm][1+3n^{-1}]^n[/mm] = [mm]e^{\bruch{1}{3}}[/mm] ,     [notok]
> [1-n^(-1)]^(-n) = e        [ok]
>  
> [mm][3-n^{-1/2}]e^{\bruch{1}{3}}[/mm]
> [7-21(100n)^(-1)][6+n^(-1000)]^(-1)[1+n^(-1)]^(-87)e
>  
> kann mir jemand weiter helfen, wie ich die anderen Faktoren
> vereinfache?
> Das Endergebnis muss [mm](7/2)e^4[/mm] sein.
>  

hallo carl,

in dem (ziemlich sonderbar zusammengeschusterten) Term
stecken nur zwei Faktor-Terme, für welche die angegebene
Formel zum Zuge kommt: der zweite mit dem Grenzwert [mm] e^3 [/mm]
(nicht [mm] e^{\bruch{1}{3}} [/mm] !)  und der letzte mit dem Grenzwert e.
Alle anderen in den eckigen Klammern stehenden Faktoren
sind von einheitlicher Form, nämlich

          [mm] [A+B*n^{-k}] [/mm]

mit reellen A,B und  k>0

Für jeden dieser Faktoren gilt:     [mm]\ \limes_{n\rightarrow\infty}[A+B*n^{-k}]=A[/mm]


Gruß     al-Chw.

Bezug
                
Bezug
Grenzwert einer Zahlenfolge: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mo 30.06.2008
Autor: carl1990

Herzlichen Dank!

Für den hilfreichen Tipp :)

Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de