www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Grenzwert gegen Pi
Grenzwert gegen Pi < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert gegen Pi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 18.01.2010
Autor: oli_k

Hallo,

im Zuge einer Stetigkeitsuntersuchung von [mm] \wurzel{(\pi-x)cos(x/2)} [/mm] muss ich den Grenzwert der Steigung am Punkt [mm] \pi [/mm] bilden (beidseitig).

Da aber aus
[mm] \bruch{\wurzel{(\pi-x)cos(x/2)}}{x-\pi} [/mm]
erstmal nur 0/0 entsteht, muss ich umformen. Habe nun schon alles mögliche versucht - L'Hospital dürfen wir noch nicht anwenden. Ich weiß, dass x/sin(x) (oder umgekehrt?!) für x gegen 0 gegen 1 geht - kann ich damit was anfangen?

Vielen Dank!

        
Bezug
Grenzwert gegen Pi: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 18.01.2010
Autor: pokermoe

Hi

Kannst du nochmal präzisieren was du machen willst ?!
was weißt du bereits über stetigkeit ?
wo soll das stetig sein ? bei pi?
wiso betrachtest du die steigung (nehme mal an, du meinst damit das diferential) ? weißt du das die funktion differenzierbar ist ?


gruß moritz

Bezug
        
Bezug
Grenzwert gegen Pi: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 18.01.2010
Autor: fred97


> Hallo,
>  
> im Zuge einer Stetigkeitsuntersuchung von
> [mm]\wurzel{(\pi-x)cos(x/2)}[/mm] muss ich den Grenzwert der
> Steigung am Punkt [mm]\pi[/mm] bilden (beidseitig).
>  
> Da aber aus
>  [mm]\bruch{\wurzel{(\pi-x)cos(x/2)}}{x-\pi}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  erstmal nur 0/0 entsteht, muss ich umformen. Habe nun
> schon alles mögliche versucht - L'Hospital dürfen wir
> noch nicht anwenden. Ich weiß, dass x/sin(x) (oder
> umgekehrt?!) für x gegen 0 gegen 1 geht - kann ich damit
> was anfangen?


Ja. Setze t:= \pi -x. Für x < \pi ist t> 0, somit

          $ \bruch{\wurzel{(\pi-x)cos(x/2)}}{x-\pi} } = \wurzel{\bruch{cos(\pi/2-t/2)}{t}} =\wurzel{\bruch{sin(t/2)}{t}}= \wurzel{2*\bruch{sin(t/2)}{t/2}} $

jetzt t \to 0

Beachte: x \to \pi \gdw t \to 0


Den Fall  x > \pi bekommst Du nun selbst hin .

FRED


>  
> Vielen Dank!


Bezug
                
Bezug
Grenzwert gegen Pi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Mo 18.01.2010
Autor: oli_k

Gut, vielen Dank!

Aber hättest du in deinen Ausführungen nicht das [mm] (\pi-x) [/mm] weiter mitschleppen müssen?

Im letzten Schritt würde man dann sehen, dass eben dieser Vorfaktor je nach Seite gegen +0 oder -0 geht, der Rest gegen 1 - damit ist die Unstetigkeit offensichtlich.

Und noch was: Ich muss noch die Gesamtstetigkeit untersuchen. Ich würde rein logisch sagen, dass die Funktion im Rest stetig ist - gibt es da ein gutes mathematisches Argument für ohne langen Beweis?

Eigentlich hätte ich gesagt KOMPLETT stetig da Zusammenfügung aus überall stetigen Funktionen - ich vermute, der Haken liegt darin, dass die Wurzelfunktion bei 0 nicht stetig ist?

Danke!

Bezug
                        
Bezug
Grenzwert gegen Pi: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 18.01.2010
Autor: Blech

Hi,

> Gut, vielen Dank!
>  
> Aber hättest du in deinen Ausführungen nicht das [mm](\pi-x)[/mm]
> weiter mitschleppen müssen?

Er hat

[mm] $\frac{\sqrt{\pi -x}}{\pi-x}$ [/mm]

gekürzt und dann substituiert.

Dabei kriegt er allerdings ein -1 im Nenner (weils ja [mm] $\frac{\sqrt{\pi -x}}{x-\pi}$ [/mm] ist), das fehlt.

> Eigentlich hätte ich gesagt KOMPLETT stetig da
> Zusammenfügung aus überall stetigen Funktionen - ich
> vermute, der Haken liegt darin, dass die Wurzelfunktion bei
> 0 nicht stetig ist?

Wo wird denn die Wurzel im Definitionsbereich 0?

Oder andersrum, warum muß [mm] $\pi$ [/mm] die einzige Stelle sein, wo die Wurzel 0 wird?

Und wie kurz Deine Stetigkeitsbetrachtung sein darf, kann ich leider nicht beurteilen. Ich weiß nicht, was Ihr schon bewiesen habt, Du darfst ja l'Hospital z.B. auch nicht verwenden.

ciao,
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de