www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert und Stetigkeit
Grenzwert und Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert und Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:47 Mi 06.01.2016
Autor: Klaraj1769953

Aufgabe
[]http://puu.sh/mlhQg/dcc5b1731e.png

Hallo

Also um vorzuwarnen, ich versteh in Mathe gar nichts und will einfach die mindest Votier Punktzahl erreichen um Mathe zu bestehen.

Bei dieser Aufgabe habe ich überhaupt keine Ahnung welche Ansätze es gibt, also ich kann mit dem Geschriebenen überhaupt nichts anfangen.

Ich hoffe es kann mir jemand helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert und Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mi 06.01.2016
Autor: angela.h.b.


> []http://puu.sh/mlhQg/dcc5b1731e.png
>  Hallo
>  
> Also um vorzuwarnen, ich versteh in Mathe gar nichts und
> will einfach die mindest Votier Punktzahl erreichen um
> Mathe zu bestehen.
>  
> Bei dieser Aufgabe habe ich überhaupt keine Ahnung welche
> Ansätze es gibt, also ich kann mit dem Geschriebenen
> überhaupt nichts anfangen.
>  
> Ich hoffe es kann mir jemand helfen.

Hallo,

[willkommenmr].

Wenn Du überhaupt nichts weißt, ist das Helfen natürlich schwer.
Die Vorlesung ersetzen und das Nacharbeiten übernehmen können wir hier im Forum natürlich nicht.

Mal etwas informell:

eine Funktion f hat an der Stelle a einen Grenzwert, wenn für sämtliche (!!!) Folgen [mm] (x_n), [/mm] die gegen a konvergieren, die Bildfolgen [mm] f(x_n) [/mm] gegen einen gemeinsamen Wert konvergieren.

Folglich:
findet man zwei Folgen [mm] (x_n), (y_n) [/mm] die gegen a konvergieren, für die die Bildfolgen  aber gegen verschiedene Werte konvergieren, hat die Funktion f an der Stelle a keinen Grenzwert.

Schauen wir uns nun mal die Funktion [mm] h(x)=sin(\bruch{1}{x}) [/mm] an.
Sie ist an der Stelle x=0 nicht definiert, denn für x dürfen wir die 0 ja nicht einsetzen.
Wir fragen uns nun, ob es an der Stelle x=0 einen Grenzwert gibt.
Dazu könntest Du Dir die Funktion dicht um 0 herum mal plotten.
Siehst Du, wie sie wild zwischen -1 und 1 hin-und herläuft?
Wahrscheinlich hat sie bei 0 keinen Grenzwert.
Versuche nun, eine Folge [mm] (x_n) [/mm] zu finden, so daß [mm] f(x_n)=1, [/mm]
und
eine Folge [mm] (y_n) [/mm] mit [mm] f(y_n)=-1. [/mm]

[Dazu ist es nüttlich, mal zu überlegen, für welche x gilt sin(x)=1 und für welche x gilt sin(x)=-1.]
Wenn Dir das Finden passender Folgen gelungen ist, hast Du gezeigt, daß  [mm] h(x)=sin(\bruch{1}{x}) [/mm] und damit auch Deine Funktion f an der Stelle x=0 keinen Grenzwert hat.

Nun zur Stetigkeit:
eine Funktion f ist stetig an der Stelle a, wenn ihr Grenzwert an dieser Stelle der Funktionswert ist.
Es müssen also zwei Dinge erfüllt sein: die Funktion muß bei a einen Grenzwert haben,
und dieser Grenzwert muß der Funktionswert sein.

Der Funktionswert Deiner Funktion f an der Stelle 0 ist f(0)=0, denn so ist Deine Funktion definiert.
Die Funktion wäre stetig, wenn sie an der Stelle x=0 einen Grenzwert hätte, und wenn dieser Grenzwert dann zusätzlich =0 wäre.
In dem Moment, in dem Du in Teil a) gezeigt hast, daß es keinen Grenzwert gibt, ist die Stetigkeit an dieser Stelle schon gestorben.

LG Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de