Grenzwert v. Folge mit Epsilon < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:46 So 07.02.2010 | Autor: | kamged |
Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich soll zeigen, dass die Folge
[mm] a_n [/mm] = [mm] \bruch{3n^2+3n-2}{n^2+2n-6} [/mm] den Grenzwert 3 besitzt.
Sei [mm] \varepsilon [/mm] > 0. [mm] \exists N_0 \in \IN \forall n>N_0 [/mm] : [mm] |a_n [/mm] - a| < [mm] \varepsilon
[/mm]
[mm] |a_n [/mm] - 3| < [mm] \varepsilon \gdw |\bruch{3n^2+3n-2}{n^2+2n-6} [/mm] - 3| < [mm] \varepsilon \gdw [/mm] ... [mm] \gdw |\bruch{16-3n}{n^2+2n-6}| [/mm] < [mm] \varepsilon
[/mm]
Wie geht es jetzt weiter? In einem Buch habe ich gelesen, dass man den linken Teil so abschätzen soll, bis es offentsichlicht ist, dass dieser Teil eine Nullfolge ist, also habe ich gemacht:
[mm] |\bruch{16-3n}{n^2+2n-6}| [/mm] = [mm] \bruch{3n - 16}{n^2+2n-6}| [/mm] < [mm] \bruch{3n}{n^2+2n} [/mm] (für n [mm] \ge [/mm] 6)< [mm] \bruch{3n}{n^2+2n^2} [/mm] = [mm] \bruch{3n}{3n^2} [/mm] = [mm] \bruch{1}{n} [/mm] < [mm] \varepsilon
[/mm]
[mm] \Rightarrow [/mm] n = [mm] \bruch{1}{\varepsilon}
[/mm]
Ist das richtig so, denn als Lösung kommt [mm] \bruch{3}{\varepsilon}
[/mm]
Wahrscheinlich nicht, aber was macht dann ab
[mm] |\bruch{16-3n}{n^2+2n-6}| [/mm] hier? Wie schätz man ab? Bruch insg. verkleiern oder vergrößern ?!
Danke
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:05 So 07.02.2010 | Autor: | Teufel |
Hi und willkommen hier!
Sieht eigentlich ganz gut aus.
An der Stelle, an der du die Betragsstriche weglässt, das geht auch erst ab $n [mm] \ge [/mm] 6$. Daher solltest du das vielleicht schon vorher erwähnen, denn da stehen tut es ja eigentlich.
Und die Stelle [mm] $\bruch{3n - 16}{n^2+2n-6}<\bruch{3n}{n^2+2n} [/mm] $ ist auch nicht so offensichtlich, denn du machst den Zähler zwar größer, indem du die -16 daraus entfernst, aber gleichzeitig machst du auch den Nenner größer, indem du die -6 entfernst.
Ob du das bedacht/nachgeprüft hast, weiß ich nicht, aber die Abschätzung stimmt dennoch für n>6.
Wenn du aber ganz auf Nummer sicher gehen willst, kannst du das auch so machen:
$ [mm] \bruch{3n - 16}{n^2+2n-6}<\bruch{3n}{n^2+2n-n}=\bruch{3n}{n^2+n}=\bruch{3}{n+1}$. [/mm]
Aber was du gemacht hast ist richtig. Eine eindeutige Lösung gibt es auch nicht. Es kommt drauf an, wie du abschätzt. So kann im Prinzip jede Lösung entstehen.
Meine Abschätzung würde zu $ [mm] \bruch{3}{n+1}<\varepsilon$ [/mm] führen, dass dann umgestellt $n> [mm] \bruch{3}{\varepsilon}-1 [/mm] $ wäre, aber das ist auch legitim.
Und deine Abschätzungen hast du auch richtig gemacht. Man muss den Bruch immer größer machen und zeigen, dass dieser dann trotzdem noch kleiner als ein [mm] \varepsilon [/mm] ist. Denn da dann deine Ausgangsfolge ja noch kleiner ist, ist diese erst recht kleiner als [mm] \varepsilon.
[/mm]
War also alles korrekt.
Teufel
|
|
|
|