www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertaufgabe
Grenzwertaufgabe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertaufgabe: verstehe Lösungsweg nicht
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 01.09.2011
Autor: Rory88

Aufgabe
Beweise die Beschränktheit der Folge:

[mm] b_n=(-1)^n\times\bruch{3n^2+5}{2n^2} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Das Ergebnis laut unserem Lehrer ist + 4 und - 4. Obwohl ich sonst mit den meisten Grenzwertaufgaben kein Problem hab kann ich das nicht nachvollziehen.

Also ich verstehe wie er auf die Lösung kommt, er teilt einfach den Bruch auf, so dass da steht: [mm] \bruch{3n^2}{2n^2} [/mm] + [mm] \bruch{5}{2n^2} [/mm]

dann zieht er vorne das [mm] n^2 [/mm] heraus und addiert [mm] \bruch{3}{2} [/mm] und [mm] \bruch{5}{2} [/mm]

Aber bei allen anderen Aufgaben die ich dazu gerechnet hab und die ähnlich aufgebaut sind kann ich das [mm] n^2 [/mm] sofort herausziehen und hätte dann da stehen:

[mm] \bruch{n^2}{n^2} [/mm] /times [mm] \bruch{3}{2} [/mm]

die 5 würde ja dann zur [mm] \bruch{5}{n^2} [/mm] werden und gegen null gehen. und [mm] \bruch{3}{2} [/mm] übrig bleiben.

und das Ergebnis wäre dann + und - [mm] \bruch{3}{2} [/mm]

also ich versteh schon auch die Lösung von meinem Lehrer aber halt einfach nicht warum man mit der Methode gleich das [mm] n^2 [/mm] rauszuziehen nicht auf das selbe Ergebnis kommt

außerdem dachte ich, dass [mm] \bruch{5}{n^2} [/mm] auch gegen null gehen würde, weil [mm] \bruch{1}{n^2} [/mm] ja gegen null geht?  Aber ich hab da wohl irgendwo einen Fehler drin.

Kann mir jemand sagen welchen Fehler ich mache?
Wir haben nächste Woche einen Test und ich will das richtig verstehen.

        
Bezug
Grenzwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Do 01.09.2011
Autor: angela.h.b.


> Beweise die Beschränktheit der Folge:
>  
> bn = [mm](-1)^n*\bruch{3n^2+5}{2n^2}[/mm]
>  Ich habe diese
> Frage in keinem Forum auf anderen Internetseiten gestellt
>  
> Das Ergebnis laut unserem Lehrer ist + 4 und - 4. Obwohl
> ich sonst mit den meisten Grenzwertaufgaben kein Problem
> hab kann ich das nicht nachvollziehen.

Hallo,

[willkommenmr].

Du verwechsest gerade etwas:

gefragt ist in Deiner Aufgabe, ob die Folge [mm] (b_n) [/mm] beschränkt ist, d.h. ob es Zahlen [mm] s_1 [/mm] und [mm] s_2 [/mm] gibt, so daß alle Folgenglieder zwischen diesen liegen. Über diese Fragestellung denkt auch Dein Lehrer nach.

Du hingegen überlegst, was mit den [mm] b_n [/mm] passiert, wenn das n unendlich groß wird.

Dein Lehrer überlegt so:

es ist bn = [mm](-1)^n*\bruch{3n^2+5}{2n^2}[/mm]= [mm] (-1)^n*[\bruch{3}{2}+\bruch{5}{2n^2}] [/mm]

Der zweite Summand ist für jedes n kleiner als [mm] \bruch{5}{2}. [/mm]
Also ist [mm] \bruch{3}{2}+\bruch{5}{2n^2}\le [/mm] 4, und wegen des Faktors [mm] (-1)^n [/mm] bekommst Du: [mm] -4\le b_n\le [/mm] 4. Somit ist die Folge nach unten durch -4 und nach oben durch 4 beschränkt.

Gruß v. Angela



>  
> Also ich verstehe wie er auf die Lösung kommt, er teilt
> einfach den Bruch auf, so dass da steht: [mm]\bruch{3n^2}{2n^2}[/mm]
> + [mm]\bruch{5}{2n^2}[/mm]
>  
> dann zieht er vorne das [mm]n^2[/mm] heraus und addiert [mm]\bruch{3}{2}[/mm]
> und [mm]\bruch{5}{2}[/mm]
>  
> Aber bei allen anderen Aufgaben die ich dazu gerechnet hab
> und die ähnlich aufgebaut sind kann ich das [mm]n^2[/mm] sofort
> herausziehen und hätte dann da stehen:
>  
> [mm]\bruch{n^2}{n^2}[/mm]*[mm]\bruch{3}{2}[/mm]
>  
> die 5 würde ja dann zur [mm]\bruch{5}{n^2}[/mm] werden und gegen
> null gehen. und [mm]\bruch{3}{2}[/mm] übrig bleiben.
>
> und das Ergebnis wäre dann + und - [mm]\bruch{3}{2}[/mm]
>  
> also ich versteh schon auch die Lösung von meinem Lehrer
> aber halt einfach nicht warum man mit der Methode gleich
> das [mm]n^2[/mm] rauszuziehen nicht auf das selbe Ergebnis kommt
>  
> außerdem dachte ich, dass [mm]\bruch{5}{n^2}[/mm] auch gegen null
> gehen würde, weil [mm]\bruch{1}{n^2}[/mm] ja gegen null geht?  Aber
> ich hab da wohl irgendwo einen Fehler drin.
>  
> Kann mir jemand sagen welchen Fehler ich mache?
>  Wir haben nächste Woche einen Test und ich will das
> richtig verstehen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de