www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertberechnung
Grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Bernoulli Hospital
Status: (Frage) beantwortet Status 
Datum: 21:37 Fr 20.03.2009
Autor: Christopf

hallo

[mm] \limes_{n\rightarrow\bruch{\pi}{2}+0}=\bruch{ln(x+\bruch{\pi}{2})}{tan(x)}= \bruch{-\infty}{\infty}=\limes_{n\rightarrow\bruch{\pi}{2}+0}=\bruch{(cos(x))^{2}}{x-\bruch{\pi}{2} } [/mm]


ich habe ein gleines Verständnisproblem

Mir ist bekannt wenn bei Grennzwertberechnung [mm] \bruch{\infty}{\infty} [/mm] rauskommt muss man jeweils ableiten.

Ich verstehe nicht wie man von [mm] ln(x-\bruch{\pi}{2}) [/mm] zu [mm] cos^{2}(x) [/mm] kommt.

Wenn ich ableite komme ich auf was anderes

Kann mir jemand das erklären

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Fr 20.03.2009
Autor: schachuzipus

Hallo Christopf,

du musst mal sauberer aufschreiben, wenn du das mal genau liest, steht da Quatsch

> hallo
>  
> [mm] $\limes_{\red{x}\rightarrow\bruch{\pi}{2}+0}=\bruch{ln(x\red{-}\bruch{\pi}{2})}{tan(x)}= \bruch{-\infty}{\infty}=\limes_{\red{x}\rightarrow\bruch{\pi}{2}+0}=\bruch{(cos(x))^{2}}{x-\bruch{\pi}{2} }$ [/mm]
>  
>
> ich habe ein gleines Verständnisproblem
>  
> Mir ist bekannt wenn bei Grennzwertberechnung
> [mm]\bruch{\infty}{\infty}[/mm] rauskommt muss man jeweils
> ableiten.
>  
> Ich verstehe nicht wie man von [mm]ln(x-\bruch{\pi}{2})[/mm] zu
> [mm]cos^{2}(x)[/mm] kommt.

Kommt man auch nicht, wird auch hier überhaupt gar nicht gemacht!

Hier geht es um die Anwendung der Regel von de l'Hôpital.

Es ergibt sich, wie da richtig steht, bei direktem Grenzübergang [mm] $\red{x}\to\frac{\pi}{2}^+$ [/mm] ein unbestimmter Ausdruck [mm] $\frac{-\infty}{\infty}$ [/mm]

Also leitet man gem. der o.e. Regel Zähler und Nenner getrennt ab

1) Zähler: [mm] $\left[\ln\left(x-\frac{\pi}{2}\right)\right]'=\frac{1}{x-\frac{\pi}{2}}$ [/mm]

2) Nenner: [mm] $\left[\tan(x)\right]'=\frac{1}{\cos^2(x)}$ [/mm]

Herleitung über die Definition des Tangens: [mm] $\tan(x)=\frac{\sin(x)}{\cos(x)}$ [/mm] und Quotientenregel

Also [mm] $\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\ln\left(x-\frac{\pi}{2}\right)}{\tan(x)}=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}}$ [/mm]

>  
> Wenn ich ableite komme ich auf was anderes
>  
> Kann mir jemand das erklären


LG

schachuzipus

Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Fr 20.03.2009
Autor: Christopf

Die Ableitung von [mm] ln(x-\bruch{\pi}{2}) [/mm] habe ich [mm] \bruch{2}{2x-\pi} [/mm] raus. Das kann ich doch noch umformen [mm] \bruch{2}{x-\bruch{\pi}{2}}. [/mm] Ist irgendwie trotzdem nicht wie deine Ableitung. habe ich mit ein Matheprogramm kontrolliert.

Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Fr 20.03.2009
Autor: schachuzipus

Hallo nochmal,

> Die Ableitung von [mm]ln(x-\bruch{\pi}{2})[/mm] habe ich
> [mm]\bruch{2}{2x-\pi}[/mm] raus. [ok] Das kann ich doch noch umformen
> [mm]\bruch{2}{x-\bruch{\pi}{2}}.[/mm]

Bitte veräppel mich nicht!

Wo ist die 2 im Nenner hin? Die (deine) Idee, sie auszuklammern, ist richtig.

[mm] $\frac{2}{2x-\pi}=\frac{\blue{2}}{\blue{2}\cdot{}\left(x-\frac{\pi}{2}\right)}=\frac{1}{x-\frac{\pi}{2}}$ [/mm]

> Ist irgendwie trotzdem nicht
> wie deine Ableitung.

Wenn du richtig kürzt, dann schon!

> habe ich mit einem Matheprogramm
> kontrolliert.

*autsch*

LG

schachuzipus


Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Fr 20.03.2009
Autor: Christopf

Wie kommst du von Lösungsschritt 1 zu Lösungsschritt 2:

[mm] 1.)\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}= [/mm]

[mm] 2.)=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}} [/mm]




Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Fr 20.03.2009
Autor: schachuzipus

Hallo nochmal,

> Wie kommst du von Lösungsschritt 1 zu Lösungsschritt 2:
>  
> [mm]1.)\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}=[/mm]
>  
> [mm]2.)=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}}[/mm]


Puh, du verwirrst mich!

Man dividiert durch einen Bruch, indem man mit dem Kehrwert desselben multipliziert!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de