www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Grenzwertbestimmung
Grenzwertbestimmung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Sa 24.05.2014
Autor: QexX

Aufgabe
Warum gilt [mm] \limes_{x \to 0}\frac{0}{x}=0 [/mm] ?


Hi,

im Grenzwert steht doch eigentlich ein unbestimmter Ausdruck [mm] \frac{0}{0}, [/mm]
wieso existiert der Grenzwert dennoch und ist gleich Null?

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 24.05.2014
Autor: Gonozal_IX

Hiho,

> im Grenzwert steht doch eigentlich ein unbestimmter Ausdruck [mm]\frac{0}{0},[/mm]

Nein. Im Grenzwert steht 0.
Du betrachtest die konstante Null-Folge und die hat als Grenzwert nun mal Null.

Um dir das klar zu machen solltest du nochmal wiederholen, für was das Symbol [mm] $\lim_{x\to 0}$ [/mm] eigentlich steht.

Gruß,
Gono.

Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Sa 24.05.2014
Autor: QexX

Danke für die schnelle Antwort!
Die Funktion [mm] f(x)=\frac{0}{x}, x\not=0 [/mm] ist konstant Null. Aber wie genau ist der Grenzwertprozess zu verstehen? ich könnte mir eine Folge [mm] (a_n)_{n\in\mathbb{N}} [/mm] definieren mit [mm] \limes_{n\to\infty}a_n=0 [/mm] und dann betrachten:
[mm] \limes_{x\to 0}f(x)=\limes_{n\to\infty}f(a_n), [/mm] dann ist der Grenzwert etwas sauberer erklärt. Wie argumentiert man jetzt präzise weiter? Da x=0 nicht im Definitionsbereich von f liegt, erhält man konstant den Wert Null, egal wie beliebig nahe man x=0 kommt?

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Sa 24.05.2014
Autor: Gonozal_IX

Hiho,

> ich könnte mir eine Folge [mm](a_n)_{n\in\mathbb{N}}[/mm] definieren mit [mm]\limes_{n\to\infty}a_n=0[/mm] und dann betrachten:
>  [mm]\limes_{x\to 0}f(x)=\limes_{n\to\infty}f(a_n),[/mm]

na das ist ja kein "Könnte" sondern ein "wie ist es definiert".
Aber so ähnlich wie du es gemacht hast, ist es auch.
Nur dass du eben alle Folgen [mm] a_n [/mm] betrachtest mit [mm] $a_n \to [/mm] 0, [mm] a_n \not= [/mm] 0$.
Aber das ändert hier nichts.

> Wie argumentiert man jetzt präzise weiter? Da x=0 nicht im Definitionsbereich von f liegt, erhält man konstant den Wert Null, egal wie beliebig nahe man x=0 kommt?

Ja, es gilt also [mm] $f(a_n) [/mm] = 0$ für alle n und damit:

[mm] $\lim_{x\to 0} [/mm] f(x) = [mm] \lim_{n\to\infty} f(a_n) [/mm] = [mm] \lim_{n\to\infty} [/mm] 0 = 0$

Gruß,
Gono.

Bezug
        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Sa 24.05.2014
Autor: DieAcht

Hallo QexX,


> Warum gilt [mm]\limes_{x \to 0}\frac{0}{x}=0[/mm] ?

Eine ähnliche Frage habe ich mir auch mal gestellt.

> im Grenzwert steht doch eigentlich ein unbestimmter
> Ausdruck [mm]\frac{0}{0},[/mm]

Was meinst du damit genau? Ich nehme an, dass du hier den
Grenzwertsatz benutzt, aber dieser gilt hier nicht, denn
im Nenner erhalten wir als Grenzwert die Null!

>  wieso existiert der Grenzwert dennoch und ist gleich Null?

Wir setzen die Eigenschaft

      [mm] $\frac{0}{x}=0$ [/mm] für alle [mm] x\in\IR\setminus\{0\} $(A)\$ [/mm]

voraus, aber gehen davon aus, dass wir diese Eigenschaft
nicht "von Anfang an" erkennen und "kürzen" nicht. Dennoch
wollen wir auf den gewünschten Grenzwert kommen und eine
Möglichkeit ist die Verarztung mit L'Hôpital, denn wir
erhalten den Fall

      [mm] "\frac{0}{0}" [/mm]

und damit gilt:

      [mm] \limes_{x \to 0}\frac{0}{x}\overset{\text{L'Hôpital}}{=}\frac{\limes_{x \to 0}0'}{\limes_{x \to 0}x'}=\frac{\limes_{x \to 0}0}{\limes_{x \to 0}1}=\frac{0}{1}\overset{(A)}{=}0. [/mm]

Liege ich mit meiner Glaskugel richtig oder meinst du etwas
anderes? Formuliere bitte deine Frage genauer, dann können
wir dir sicher helfen.


Gruß
DieAcht

Bezug
                
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Sa 24.05.2014
Autor: Gonozal_IX

Hallo DieAcht,

mit l'Hôpital auf diesen Ausdruck loszugehen, erscheint mir doch ein wenig mit Kanonen auf Spatzen geschossen, da es hier gar nicht notwendig ist.

Gruß,
Gono.

Bezug
                        
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Sa 24.05.2014
Autor: QexX

Per Definition des Limes (wie oben benutzt mit den Folgen) ist jetzt schlüssig,
vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de