www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertbestimmung Bruch
Grenzwertbestimmung Bruch < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung Bruch: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 18.11.2006
Autor: LiBiTiNA

Aufgabe
[mm] \limes_{x\rightarrow\4} \bruch {x^2-6x+8}{x^2-3x-4} [/mm]

lim x->4

Hallo ihr lieben!

Bei dem Limes hat der das x-->4 leider nicht übernommen, ich hoffe, dass das kein Problem für euch ist!

Meine Frage dazu! Normalerweise guckt man sich beim limes ja grundsätzlich die variable mit dem höchsten Exponenten an. Nunja.. wenn ich mir das [mm] x^2 [/mm] angucke, bringt mich das ja nicht weiter. Kann ich mir da jetzt bei beiden Funktionen die darauffolgenden zahlen angucken, also die -6x und die -3x? Und dann?

        
Bezug
Grenzwertbestimmung Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 18.11.2006
Autor: Carlchen


> [mm]\limes_{x\rightarrow 4} \bruch {x^2-6x+8}{x^2-3x-4}[/mm]
>  
> lim x->4
>  
> Hallo ihr lieben!
>  
> Bei dem Limes hat der das x-->4 leider nicht übernommen,
> ich hoffe, dass das kein Problem für euch ist!
>  
> Meine Frage dazu! Normalerweise guckt man sich beim limes
> ja grundsätzlich die variable mit dem höchsten Exponenten
> an. Nunja.. wenn ich mir das [mm]x^2[/mm] angucke, bringt mich das
> ja nicht weiter. Kann ich mir da jetzt bei beiden
> Funktionen die darauffolgenden zahlen angucken, also die
> -6x und die -3x? Und dann?

Hallo LiBiTiNA,

Die Methode, die du vorgeschlagen hast funktioniert hier nicht, da [mm]\limes_{x\rightarrow 4}[/mm] ist.
Koeffizientenvergleich geht nur, wenn der limes gegen [mm]\infty[/mm] geht.

Bei deiner Aufgabe musst du wie folgt vorgehen:

Du setzt die 4 in deine Funktion ein und bekommst:

[mm]\limes_{x\rightarrow 4} \bruch {4^2-6 \cdot 4+8}{4^2-3 \cdot 4-4} = \bruch{0}{0}[/mm]

Hm.. Doof! Denn das ist nicht definiert!

Also musst du auf deine Funktion die Regel von l'Hospital (Bekannt? Wenn nicht, dann []hier klicken) anwenden.
D.h. du musst den Zähler einmal ableiten und den Nenner einmal ableiten und bekommst:

[mm]\limes_{x\rightarrow 4}\bruch{2x - 6}{2x - 3}[/mm]

[mm]x=4[/mm] einsetzen, und fertig ist dein Grenzwert.

Gruß Carlchen

Bezug
                
Bezug
Grenzwertbestimmung Bruch: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Sa 18.11.2006
Autor: LiBiTiNA

Vielen Dank für die schnelle Antwort!! Habs verstanden... :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de