Grenzwertbestimmung e-Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:13 So 30.03.2008 | Autor: | JakobL |
Nabend allerseits,
habe mal eine Frage zu einer Aufgabe aus dem Buch "Repetitorium der höheren Mathematik" von Merziger/Wirth. Und zwar geht es da in Aufgabe 12.59 darum, ob sich die Funktion
[mm] f(x) = (e^{1/x} + e^{-1/x})^x[/mm]
an der Stelle x0 = 0 stetig fortsetzen lässt. Die Lösung steht ja in dem Buch: Es geht nicht, weil der rechtsseitige Grenzwert [mm] e^1 [/mm] ist und der linksseitige e^-1 ist. Bloß habe ich keinen Ansatz wie ich auf diese Grenzwerte kommen soll. Wenn mir dabei jemand zur Hand gehen könnte, wär ich sehr dankbar :)
Schönen Abend noch
Jakob
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo JakobL,
> Nabend allerseits,
>
> habe mal eine Frage zu einer Aufgabe aus dem Buch
> "Repetitorium der höheren Mathematik" von Merziger/Wirth.
> Und zwar geht es da in Aufgabe 12.59 darum, ob sich die
> Funktion
>
> [mm]f(x) = (e^{1/x} + e^{-1/x})^x[/mm]
>
> an der Stelle x0 = 0 stetig fortsetzen lässt. Die Lösung
> steht ja in dem Buch: Es geht nicht, weil der rechtsseitige
> Grenzwert [mm]e^1[/mm] ist und der linksseitige e^-1 ist. Bloß habe
> ich keinen Ansatz wie ich auf diese Grenzwerte kommen soll.
> Wenn mir dabei jemand zur Hand gehen könnte, wär ich sehr
> dankbar :)
Das Stichwort hier heißt; L'Hospital
Zunächst einmal gilt:
[mm]\limes_{x \rightarrow 0}{\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)^{x}}=\limes_{x \rightarrow 0}{e^{x*\ln\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)}}[/mm]
Womit der Exponent auf die Form [mm]0*\infty[/mm] zurückgeführt ist.
Weiter gilt:
[mm]\limes_{x \rightarrow 0}{e^{x*\ln\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)}}=e^{\limes_{x \rightarrow 0}{x*\ln\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)}}}[/mm]
Deshalb reicht es, wenn man den Ausdruck
[mm]\limes_{x \rightarrow 0}{x*\ln\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)}}[/mm]
untersucht.
Bringe zunächst [mm]x*\ln\left(e^{\bruch{1}{x}}+e^{-\bruch{1}{x}}\right)[/mm] auf die Form [mm]\bruch{0}{0}[/mm] oder [mm]\bruch{\infty}{\infty}[/mm].
Dann kannst Du L'Hospital anwenden.
>
> Schönen Abend noch
>
> Jakob
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mo 31.03.2008 | Autor: | JakobL |
vielen dank!
|
|
|
|