Grenzwertbetrachtung < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:01 Do 08.06.2006 | Autor: | djmatey |
Hallo,
es sei [mm] \varepsilon [/mm] > 0 beliebig vorgegeben.
Es geht nun um den Bruch
[mm] \bruch{1}{\varepsilon * (ln(a))^{\varepsilon}}
[/mm]
für a>0.
Es sollen Grenzwertbetrachtungen durchgeführt werden für z.B. a [mm] \to [/mm] 0 oder a [mm] \to [/mm] 1, was meiner Meinung nach die einzigen interessanten Stellen sind, denn für alle anderen a ist der Bruch ohnehin endlich.
Hier meine Fragen:
1)
Wann ist der Bruch endlich?
Meine Überlegung:
Für a [mm] \to [/mm] 1 müsste er unendlich sein, da dann ln(a) [mm] \to [/mm] 0 gilt.
2)
Wie verhält sich der Bruch für a [mm] \to [/mm] 0? Ist das überhaupt unbedingt definiert, denn [mm] \varepsilon [/mm] ist ja beliebig vorgegeben und [mm] (ln(a))^{\varepsilon} [/mm] nicht unbedingt definiert, z.B. für a [mm] \in [/mm] (0,1) und [mm] \varepsilon [/mm] = [mm] \bruch{1}{2} [/mm] steht da ja eine Wurzel aus einer negativen Zahl. Oder macht das wegen der Limesbetrachtung nichts, d.h. der Bruch würde gegen 0 konvergieren!?
Vielen Dank im Voraus und beste Grüße,
Matthias.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:19 Do 08.06.2006 | Autor: | dormant |
> [mm]\bruch{1}{\varepsilon * (ln(a))^{\varepsilon}}[/mm]
> für a>0.
> Es sollen Grenzwertbetrachtungen durchgeführt werden für
> z.B. a [mm]\to[/mm] 0 oder a [mm]\to[/mm] 1, was meiner Meinung nach die
> einzigen interessanten Stellen sind, denn für alle anderen
> a ist der Bruch ohnehin endlich.
Normalerweise soll man bei solchen Aufgaben das [mm] \epsilon [/mm] Richtung 0 schicken. Sonst sind 0, 1 und vielleicht die Basis, zu der logarithmiert wird, die einzigen reellen Zahlen, die interessant sein könnten. Es bleibt noch [mm] \pm\infty [/mm] übrig.
> Hier meine Fragen:
>
> 1)
> Wann ist der Bruch endlich?
> Meine Überlegung:
> Für a [mm]\to[/mm] 1 müsste er unendlich sein, da dann ln(a) [mm]\to[/mm] 0
> gilt.
Bei Grenzwertprozessen (also "Prozessen, die unendlich viele Schritte brauchen") ist das eine sehr interessante Defintionsfrage. Ich würde sagen, der Bruch ist endlich, wenn der Zähler endlich ist und der Nenner ungleich 0 ist.
>
> 2)
> Wie verhält sich der Bruch für a [mm]\to[/mm] 0?
> Ist das überhaupt
> unbedingt definiert, denn [mm]\varepsilon[/mm] ist ja beliebig
> vorgegeben und [mm](ln(a))^{\varepsilon}[/mm] nicht unbedingt
> definiert, z.B. für a [mm]\in[/mm] (0,1) und [mm]\varepsilon[/mm] =
> [mm]\bruch{1}{2}[/mm] steht da ja eine Wurzel aus einer negativen
> Zahl. Oder macht das wegen der Limesbetrachtung nichts,
> d.h. der Bruch würde gegen 0 konvergieren!?
Die Potenz Funktion [mm] f(x)=x^{\alpha} [/mm] ist definiert auf [mm] \IR^{+} [/mm] und für [mm] \alpha\in\IR, [/mm] also ist dein Bruch für [mm] a\in (-\infty, [/mm] 1] gar nicht definiert. Das macht schon was aus bei Grenzwertüberlegungen, da fast alle Folgenglieder der Folge [mm] \ln(a_{n}) [/mm] nicht definiert sind, wenn [mm] a->\beta<0 [/mm] für [mm] n->\infty.
[/mm]
Gruß,
dormant
|
|
|
|