www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Grenzwertbetrachtung
Grenzwertbetrachtung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 12.10.2011
Autor: pc_doctor

Aufgabe
Untersuchen Sie das Grenzveralten von [mm] \bruch{f(x)}{g(x)} [/mm] für x -> [mm] \infty [/mm]
f(xs) = [mm] x^{3} [/mm] - [mm] 3x^{2} [/mm] - x +4 und g(x) = -4x + 5


Hallo , ich gehe wie folgt vor :

[mm] \limes_{ x\rightarrow\ \infty} \bruch{x^{3} - 3x^{2} - x +4}{-4x + 5} [/mm]


[mm] \limes_{ x\rightarrow\ \infty} \bruch{x(x^{2} - 3x - 1 + \bruch{4}{x})}{-4x+5} [/mm]

Kann ich jetzt wegkürzen , z.B -4x und x ? Oder kürzen nur die Dummen Differenzen und Summen :P

        
Bezug
Grenzwertbetrachtung: Edit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mi 12.10.2011
Autor: pc_doctor

Edit , ich kann das x im Nenner ausklammern und dann x mit x kürzen , geht das ?

Bezug
        
Bezug
Grenzwertbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 12.10.2011
Autor: schachuzipus

Hallo pc_doctor,


> Untersuchen Sie das Grenzveralten von [mm]\bruch{f(x)}{g(x)}[/mm]
> für x -> [mm]\infty[/mm]
>  f(xs)

Was ist [mm]xs[/mm] ??

> = [mm]x^{3}[/mm] - [mm]3x^{2}[/mm] - x +4 und g(x) = -4x + 5
>  
> Hallo , ich gehe wie folgt vor :
>  
> [mm]\limes_{ x\rightarrow\ \infty} \bruch{x^{3} - 3x^{2} - x +4}{-4x + 5}[/mm]
>  
>
> [mm]\limes_{ x\rightarrow\ \infty} \bruch{x(x^{2} - 3x - 1 + \bruch{4}{x})}{-4x+5}[/mm]
>  
> Kann ich jetzt wegkürzen , z.B -4x und x ? Oder kürzen
> nur die Dummen Differenzen und Summen :P

Jo, du kannst im Nenner ja aber auch noch vor dem Kürzen [mm]x[/mm] ausklammern, das gibt dann:

[mm]...=\lim\limits_{x\to\infty}\frac{x(x^2-3x-1+4/x)}{x(-4+5/x)}[/mm]

Nun kannst du $x$ kürzen und schauen, was dann für [mm]x\to\infty[/mm] passiert.

Der Zähler macht was? Der Nenner was?

Insgesamt passiert was?

;-)

Gruß

schachuzipus


Bezug
                
Bezug
Grenzwertbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 12.10.2011
Autor: pc_doctor

Ich habe jetzt mal für x 1000 eingesetzt , das Ergebnis wird negativ und immer "negativer" , heißt dann , dass als Ergebnis - unendlich rauskommt.

Also - [mm] \infty[/mm]

Bezug
                        
Bezug
Grenzwertbetrachtung: Ergebnis okay
Status: (Antwort) fertig Status 
Datum: 18:05 Mi 12.10.2011
Autor: Loddar

Hallo pc_doctor!


Das Ergebnis mit [mm] $-\infty$ [/mm] ist korrekt. [ok]

Jedoch solltest Du das auch rechnerisch(er) und ohne Einsetzen begründen können.


Gruß
Loddar


Bezug
                                
Bezug
Grenzwertbetrachtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 12.10.2011
Autor: pc_doctor

Wie rechnerischer ?

Ich würde es ganz normal mit [mm] \limes_{ x\rightarrow\ \infty} [/mm] schreiben , das x wegkürzen , was sollte man da noch hinschreiben , könntest du das bitte bisschen genauer erklären?

Bezug
                                        
Bezug
Grenzwertbetrachtung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mi 12.10.2011
Autor: reverend

Hallo pc_doctor,

> Wie rechnerischer ?

Na, jedenfalls mit dem Einsetzen einer Zahl. Da kann man sich erstaunlich leicht irren, auch wenn Deine beiden Funktionen hier keine solche Falle beinhalten.

> Ich würde es ganz normal mit [mm]\limes_{ x\rightarrow\ \infty}[/mm]
> schreiben , das x wegkürzen , was sollte man da noch
> hinschreiben , könntest du das bitte bisschen genauer
> erklären?

Na, wenn Du so vorgehst, wie schachuzipus es aufgeschrieben hat, kannst Du auch ohne Einsetzen begründen, dass für [mm] x\to\infty [/mm] der Nenner gegen -4 läuft, der Zähler aber gegen [mm] +\infty. [/mm] Der gesamte Grenzwert muss daher [mm] -\infty [/mm] sein.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de