www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwerte
Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 01.12.2007
Autor: frieder1990

Hallo und erstmal danke, dass ihr reingeschaut habt. Ich habe folgende zwei Probleme :
1.) Soll ich den Grenzwert für f(x)= [mm] (-x^6 [/mm] + [mm] x^4 [/mm] - [mm] 8^3 [/mm] +5x) / [mm] (2x^4 [/mm] - 7x² -x ) für die Stelle x=0 ermitteln. Bei x gegen 0 klammert man ja normalerweise die kleinste Potenz im Nenner aus, jedoch nur, wenn nirgendwo ein Absolutglied vorkommt. Das ist aber hier mit [mm] 8^3 [/mm] der Fall ! Und jetz weiß ich nicht, wie ich weiter machen soll. Könntet ihr mir vielleicht helfen?

Und mein zweites Problem ist, dass ich den Grenzwert der Funktion
f(x)= [mm] (5^x [/mm] - [mm] 3^x) [/mm] / [mm] (3^x-5^x) [/mm] für x gegen [mm] -\infty [/mm] errechnen soll. Ich klammere die höchste Potenz des Nenners aus (also [mm] 5^x). [/mm] Dann steht da am Ende : (1- [mm] (3/5)^x) [/mm] / [mm] ((3/5)^x [/mm] - 1). Nun wäre bei mir der Grenzwert minus unendlich, da x ja negativ ist. Also steht da ja (1 - 1/(3/5)^IxI) / ((1/(3/5)^IxI) - 1). Und das ist bei mir unendlich negativ. Das Problem ist aber, dass mir mein GTR den Grenzwert als -1 angibt. Was mach ich falsch ? Oder wo ist mein Denkfehler ?

Danke schon mal im Vorraus für eure Hilfe

        
Bezug
Grenzwerte: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 01.12.2007
Autor: Loddar

Hallo frieder!


Forme hier mal zunächst um:
$$f(x) \ = \ [mm] \bruch{5^x -3^x}{3^x-5^x} [/mm] \ = \ [mm] \bruch{-\left(3^x-5^x\right)}{3^x-5^x} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
        
Bezug
Grenzwerte: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 16:31 Sa 01.12.2007
Autor: Loddar

Hallo frieder!


Zerlege Deinen Bruch:
$$f(x) \ = \ [mm] \bruch{-x^6 +x^4 -8^3 +5x}{2x^4 - 7x^2 -x} [/mm] \ = \ [mm] \bruch{-x^6 +x^4 +5x}{2x^4 - 7x^2 -x}-\bruch{8^3 }{2x^4 - 7x^2 -x} [/mm] \ = \ [mm] \bruch{-x^5 +x^3 +5}{2x^3 - 7x-1}-\bruch{8^3 }{2x^4 - 7x^2 -x} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 So 02.12.2007
Autor: frieder1990

Hallo loddar und erstmal danke für deine schnelle Hilfe. Ich häng immer noch bei der ersten Aufgabe : Das Problem ist, dass der zweite Term für [mm] \bruch{8^3}{2x^4 - 7x^2 -x} [/mm] für x gegen 0 nicht definiert ist ! Was mach ich da ?

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 So 02.12.2007
Autor: Kroni

Hi,

wenn der zweite Term einfach so definiert wäre, bräuchte man ja auch für normal keinen Grenzwert für x gegen unendlich berechnen.

Nun, im Zähler steht eine Konstante Größe. Im Zähler steht irgendetwas, was NUR in Abhängigkeit von x steht. Also kannst du dir das vom Prinzip her so vorstllen wie die Funktion 1/x, um einen groben Überblick zu bekommen.

Dann musst du dir nur noch Gedanken über die Vorzeichen deines Grenzwertes machen, da dieser verschieden ist, je nachdem, ob du nun von links an die 0 kommst oder von rechts.
Dazu hilft folgende Überlegung:

Hast du eine sehr sehr kleine Zahl, nahe an 0, und potenzierst diese mit 4, so wird diese Zahl ja noch viel viel kleiner. Die Zahl mit 2 potenziert ist ein bisschen größer, aber im Vergleich zu der Zahl selbst ist diese auch noch ziemlich klein. Daher entscheidet eigentlich nur die Variable x über das Vorzeichen.

Ich dekne, das waren nun genügend Tips, jetzt bist du erst einmal wieder an der Reihe =)

LG

Kroni

Bezug
                                
Bezug
Grenzwerte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:09 So 02.12.2007
Autor: frieder1990

Ok, also noch mal auf Anfang mit meinen Gedanken.
DIe gegebene Funktion lautete : [mm] \bruch{-x^6 + x^4 - 8^3 + 5x}{2x^4 - 7x² - x} [/mm] .
Nach Loddar forme ich das ganze jetz um in : lim [mm] \bruch{-x^6 + x^4 - 8^3 + 5x}{2x^4 - 7x² - x} [/mm]    =    lim [mm] (-x^6 [/mm] + [mm] x^4 [/mm] - [mm] 8^3 [/mm] + 5x) * lim [mm] \bruch{1}{2x^4 - 7x² - x} [/mm]    =  -507  * lim [mm] \bruch{1}{2x^4 - 7x² - x} [/mm]
Für x kleiner 0 wird das [mm] \bruch{1}{+ ne sehr kleine Zahl}. [/mm]
Folglich wird das - unendlich. (-507) * (+ unendlich) ergibt (- unendlich) .
Für x größer 0 wird das [mm] \bruch{1}{- ne sehr kleine Zahl}. [/mm]
Folglich wird das - unendlich. (-507) * (- unendlich) ergibt (+ unendlich).

Ok.... der rechtsseitige Grenzwert stimmt mit dem, den mir mein GTR zeigt überein. Der linksseitige aber ni. Der linksseitige geht bei mir ja in RIchtung - unendlich, der GTR sagt aber, der würde auch ins +unendliche gehen. Wo is mein Denkfehler?

Danke übrigens, dass ihr mir so helft :-) Schönen 1. Advent allen !

Bezug
                                        
Bezug
Grenzwerte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Di 04.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de