www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwerte
Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Idee/Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:16 Sa 19.01.2008
Autor: Hoffmann79

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo erstmal,

bin neu hier. Ich bin seit September vergangenen Jahres in einer Fachoberschule und hole dort in 1 Jahr mein Abi nach. Es läuft soweit ganz gut, nur in Mathe hängt es etwas. Mein Lehrer hat mir jetzt die Möglichkeit angeboten mit einem Kurzvortrag zum Thema Grenzwerte und Ableitungen mir ein paar Zusatzpunkte zu holen.

Nun zu meiner/seiner Frage:

"Wichtig wäre, dass die Grenzwertmethode [mm] $x+\Delta [/mm] h$ geklärt wird und der Übergang von [mm] x^n [/mm] zu [mm] n*x^{n-1} [/mm] schlüssig dargestellt wird."

Ich weiss wie man ableitet und auch das Anweden der Regeln funktioniert. Nur eben diese Zusammenhänge sind mir ein Rätsel.

Hoffe ihr könnt mir helfen.

MfG

Neumitglied Daniel

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 So 20.01.2008
Autor: steppenhahn

Hallo Daniel, willkommen im Matheraum!

Die Ableitung ist ja nicht durch die Ableitungsregeln definiert, sondern durch den Grenzwert

[math]f'(x) = \limes_{h\rightarrow 0} \bruch{f(x+h)-f(x)}{h} [/math]

(d.h. anschaulich h ist der Abstand der beiden Punkte P(x|f(x)) und P(x+h|f(x+h)), die sich immer näher kommen).

Sei nun [math] f(x) = x^{n} [/math]

Setzen wir es mal ein:

[math]f'(x) = \limes_{h\rightarrow 0} \bruch{f(x+h)-f(x)}{h} = \limes_{h\rightarrow 0} \bruch{(x+h)^{n}-x^{n}}{h} [/math]

Das Ziel ist nun, möglichst den oberen Ausdruck im Bruch so auszuwerten, dass wir ein h ausklammern und dann den Grenzwert berechnen können.

Dies erreichen wir mit folgender Überlegung:

[math] (x+h)^{n} = x^{n} + n*x^{n-1}*h + h^{2}*( ... ) [/math]

Nun setzt man das wieder oben ein:

[math] = \limes_{h\rightarrow 0} \bruch{x^{n} + n*x^{n-1}*h + h^{2}*( ... )-x^{n}}{h} = \limes_{h\rightarrow 0} \bruch{n*x^{n-1}*h + h^{2}*( ... )}{h}[/math]

Nun kann man das h rauskürzen:

[math] = \limes_{h\rightarrow 0} n*x^{n-1} + h*( ... ) = n*x^{n-1}[/math]

Fertig!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de