Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo. Ich habe noch eine wichtige Frage. Und zwar geht es um Reihen wie z.B. [mm] \bruch{\wurzel{x^3+2x^2+3}}{\wurzel{4x^3+2x^2+6}}
[/mm]
Ich wollte mal fragen, ob es hierbei auch irgendwelche Tricks gibt. Ich find das bei Wurzeln irgendwie schwieriger. ABer ich glaube uahc hier kann man x ausklammern!!!
Mit freundlichen Grüßen domenigge135
|
|
|
|
> Hallo. Ich habe noch eine wichtige Frage. Und zwar geht es
> um Reihen wie z.B.
> [mm]\bruch{\wurzel{x^3+2x^2+3}}{\wurzel{4x^3+2x^2+6}}[/mm]
>
> Ich wollte mal fragen, ob es hierbei auch irgendwelche
> Tricks gibt. Ich find das bei Wurzeln irgendwie
> schwieriger. ABer ich glaube uahc hier kann man x
> ausklammern!!!
> Mit freundlichen Grüßen domenigge135
Hey! Es ist ja: [mm] \bruch{\wurzel{x^3+2x^2+3}}{\wurzel{4x^3+2x^2+6}} [/mm] = [mm] \wurzel{\bruch{{x^3+2x^2+3}}{{4x^3+2x^2+6}}}. [/mm] Nun kannst du die Höchste Potenz, also [mm] x^3 [/mm] ausklammern und anschließend die Grenzwertbetrachtung durchführen, indem du den limes unter die Wurzel ziehst.
Als Endergebnis solltest du 0,5 erhalten.
Gruß Patrick
|
|
|
|
|
Achso ich kann das dann im Prinzip schreibe als [mm] \wurzel{\limes_{x\rightarrow\infty}\bruch{x^3(1+\bruch{2}{x}+\bruch{3}{x^3})}{x^3(4+\bruch{2}{x}+\bruch{6}{x^3})}} [/mm] = [mm] \wurzel{\bruch{1}{4}} [/mm] = [mm] \bruch{1}{2}???
[/mm]
Mit freundlichen Grüßen domenigge135
|
|
|
|
|
Ganz genau, auf dem Papier solltest du vielleicht ein paar mehr Zwischenschritte einbauen, aber vom Prinzip ist es auf alle Fälle richtig
|
|
|
|