www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Grenzwerte
Grenzwerte < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Di 09.09.2008
Autor: fertig

Aufgabe
Wenn g = [mm] \bruch{3}{2} [/mm] Grenzwert der Zahlenfolge [mm] a_{n} [/mm] ist, dann muss gelten: [mm] \limes_{n\rightarrow\infty} (a_{n} [/mm] - [mm] \bruch{3}{2} [/mm] ) = 0.

Hallo,
ich habe zwar versucht mit dem Beweis zu beginnen, komme allerdings nicht sehr weit..ich würde mich über Hilfe freuen.

[mm] a_{n} [/mm] = [mm] \bruch{3 * 2^{n} +2}x^{n+1} [/mm]
= [mm] \bruch{3*2^{n}}{2^{n+1}} [/mm] + [mm] \bruch{2}{2^{n+1}} [/mm]

Mfg,
fertig


        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 09.09.2008
Autor: Al-Chwarizmi


> Wenn g = [mm]\bruch{3}{2}[/mm] Grenzwert der Zahlenfolge [mm]a_{n}[/mm] ist,
> dann muss gelten: [mm]\limes_{n\rightarrow\infty} (a_{n}[/mm] -
> [mm]\bruch{3}{2}[/mm] ) = 0.
>  Hallo,
> ich habe zwar versucht mit dem Beweis zu beginnen, komme
> allerdings nicht sehr weit..ich würde mich über Hilfe
> freuen.
>  
> [mm]a_{n}[/mm] = [mm]\bruch{3 * 2^{n} +2}x^{n+1}[/mm]
>  =
> [mm]\bruch{3*2^{n}}{2^{n+1}}[/mm] + [mm]\bruch{2}{2^{n+1}}[/mm]
>  
> Mfg,
>  fertig
>  



Was soll bewiesen werden ?

Was soll das  x  bedeuten ?

Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Di 09.09.2008
Autor: fertig

Ohh. Da soll statt dem x ein [mm] 2^{n+1} [/mm] hin.

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Di 09.09.2008
Autor: schachuzipus

Hallo,

die Folge [mm] $(a_n)_n$ [/mm] mit [mm] $a_n=\frac{3\cdot{}2^n+2^{n+1}}{2^{n+1}}$ [/mm] strebt für [mm] $n\to\infty$ [/mm] aber nicht gegen [mm] $\frac{3}{2}$, [/mm] sondern gegen [mm] $\frac{5}{2}$ [/mm]

[mm] $a_n=\frac{3\cdot{}2^n+2^{n+1}}{2^{n+1}}=\frac{2^n\cdot{}\left(3+2\right)}{2^n\cdot{}2}=\frac{5}{2}$ [/mm]

Also vllt. postest du mal die korrekte Aufgabe, am besten im Originalwortlaut ... ;-)

Wenn ich mit meiner Vermutung bzgl. des GW recht habe, rechne doch mal [mm] $a_n-\frac{5}{2}$ [/mm] aus und schaue, was für [mm] $n\to\infty$ [/mm] passiert ...


LG

schachuzipus

Bezug
                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Di 09.09.2008
Autor: fertig

Naja, der konkrete Wortlaut wäre..
Zeigen Sie, dass die Differenzenfolge [mm] (a_{n}-g) [/mm] eine Nullfoge ist.

[mm] (\bruch{3*2^{n}+2}{2^{n+1}}) [/mm] ; g= [mm] \bruch{3}{2} [/mm]

Bezug
                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Di 09.09.2008
Autor: schachuzipus

Hallo nochmal,

das ist ne andere Folge als oben angegeben, macht aber nix, der Weg bleibt derselbe:

Rechne [mm] $a_n-\frac{3}{2}$ [/mm] mal aus.

Einfach hinschreiben und vereinfachen ...

Dann schaue, was mit dem zusammengefassten Ausdruck für [mm] $n\to\infty$ [/mm] passiert ...


Gruß

schachuzipus

Bezug
                                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 09.09.2008
Autor: fertig

Mein Problem ist allerdings, dass ich beim Rechnen nicht mit dem, beispielsweise [mm] x^{n+1} [/mm] umgehen kann ..

Bezug
                                                        
Bezug
Grenzwerte: erste Schritte
Status: (Antwort) fertig Status 
Datum: 19:32 Di 09.09.2008
Autor: Loddar

Hallo fertig!


Dann mal die ersten Schritte der Umformung...
[mm] $$\bruch{3*2^n+2}{2^{n+1}}-\bruch{3}{2} [/mm] \ = \ [mm] \bruch{3*2^n+2}{2*2^n}-\bruch{3}{2} [/mm] \ = \ [mm] \bruch{3*2^n+2}{2*2^n}-\bruch{3*2^n}{2*2^n} [/mm] \ = \ [mm] \bruch{3*2^n+2-3*2^n}{2*2^n} [/mm] \ =\ ...$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de