www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte bei Reihen
Grenzwerte bei Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 So 23.09.2012
Autor: Tony1234

Aufgabe
a) [mm] \bruch{3n^3}{2n^3} [/mm]

b) [mm] \bruch{3n^3}{2n^2} [/mm]

c) [mm] \bruch{3n^2}{2n^3} [/mm]

Hallo, ich habe gerade überlegt, wie es iin den beiden unteren Fällen mit dem Grenzwert aussieht.

oben rechne ich einfach durch [mm] n^3 [/mm] und erhalte als Grenzwert [mm] \bruch{3}{2} [/mm]

Bei b kann ich ja höchstens durch [mm] n^2 [/mm] teilen und ein n bleibt im Zäler stehen.. geht die Folge dann gegen [mm] \infty? [/mm]

Bei c) erhalte ich [mm] \bruch{\bruch{3}{n}}{2} [/mm]
wie siht es hier aus? gegen 0?

        
Bezug
Grenzwerte bei Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:08 So 23.09.2012
Autor: Valerie20

Hi!

> a) [mm]\bruch{3n^3}{2n^3}[/mm]
>  
> b) [mm]\bruch{3n^3}{2n^2}[/mm]
>  
> c) [mm]\bruch{3n^2}{2n^3}[/mm]
>  Hallo, ich habe gerade überlegt, wie es iin den beiden
> unteren Fällen mit dem Grenzwert aussieht.
>  
> oben rechne ich einfach durch [mm]n^3[/mm] und erhalte als Grenzwert
> [mm]\bruch{3}{2}[/mm]
>  
> Bei b kann ich ja höchstens durch [mm]n^2[/mm] teilen und ein n
> bleibt im Zäler stehen.. geht die Folge dann gegen
> [mm]\infty?[/mm]
>  
> Bei c) erhalte ich [mm]\bruch{\bruch{3}{n}}{2}[/mm]
>  wie siht es hier aus? gegen 0?

Deine Überschrift lautet "Grenzwert bei Reihen".
Reihen sehe ich hier aber nicht.
Desweiteren schreibst du etwas über Folgen...

Teile bitte zunächst die korrekte Aufgabenstellung mit.
So ist das sinnfrei.

Valerie


Bezug
                
Bezug
Grenzwerte bei Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 So 23.09.2012
Autor: Tony1234

Ja, ich meinte natürlich Folgen.. war vorher mit Reihen beschäftigt, daher etwas durcheinander!

Bezug
        
Bezug
Grenzwerte bei Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 So 23.09.2012
Autor: M.Rex

Hallo

> a) [mm]\bruch{3n^3}{2n^3}[/mm]

Diese Folge ist eine Konstante Folgen, denn man kann das n³ komplett herauskürzen

>  
> b) [mm]\bruch{3n^3}{2n^2}[/mm]

Auch hier kannst du kürzen zu [mm] \frac{3n}{2} [/mm]

>  
> c) [mm]\bruch{3n^2}{2n^3}[/mm]

Auch hier kürze zu [mm] \frac{3}{2n} [/mm]

>  Hallo, ich habe gerade überlegt, wie es iin den beiden
> unteren Fällen mit dem Grenzwert aussieht.
>  
> oben rechne ich einfach durch [mm]n^3[/mm] und erhalte als Grenzwert
> [mm]\bruch{3}{2}[/mm]
>  
> Bei b kann ich ja höchstens durch [mm]n^2[/mm] teilen und ein n
> bleibt im Zäler stehen.. geht die Folge dann gegen
> [mm]\infty?[/mm]

für [mm] n\to\infty [/mm] ja, wenn die folge wirklich so definiert ist.

>  
> Bei c) erhalte ich [mm]\bruch{\bruch{3}{n}}{2}[/mm]
>  wie siht es hier aus? gegen 0?

Für [mm] n\to\infty [/mm] geht die Folge, sofern sie so definiert ist, in der Tat gegen 0.

Wie Valerie aber schon sagte, wäre es hilfreich, die genaue Definition der Folgen zu bekommen.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de