www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte beweisen
Grenzwerte beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 14.11.2007
Autor: H8U

Zeigen Sie:

a) Für a [mm] \in \IC [/mm] gilt [mm] \limes_{n\rightarrow\infty} \bruch{a^n}{n!} [/mm] = 0
Tipp: Zeigen Sie zunächst, dass für n [mm] \ge {\bar n} [/mm] > 2|a| gilt:

| [mm] \bruch{a^n}{n!} [/mm] | [mm] \le \bruch{|a|^\bar n}{\bar n!} (\bruch{1}{2})^{n-\bar n} [/mm]

b) [mm] \limes_{n\rightarrow\infty} \wurzel[n]{n!} [/mm] = [mm] \infty [/mm]
Tipp: Zeigen Sie zunächst, dass Folge [mm] (\wurzel[n]{n!})_n_\in_\IN [/mm] monoton wachsend ist und führen Sie die Annahme, dass die Folge beschränkt ist, zum Widerspruch.

Bei a) würde ich den Tipp mit einem simplen Gegenbeispiel beweisen, also mit einem Zahlenbeispiel. Doch wie wende ich den Tipp auf die Aufgabe an? Was muss ich beachten, wenn a komplex ist? Wie gehe ich dann diesen Grenzwert-beweis an?

Ich weiß, dass eine Wurzelfunktion stets monoton wachsend ist, aber wie zeigen? Wie bei a) weiß ich nicht wirklich, wie ich diesen Tipp anwenden könnte, auf die Aufgabe.

Danke für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mo 19.11.2007
Autor: Tigerlilli

Könnte hier jemand von euch uns noch einen Tipp geben? Also ich bin genauso ratlos,wie du H8U. -_- Bitte. LG

Bezug
        
Bezug
Grenzwerte beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Di 20.11.2007
Autor: leduart

Hallo
zu b) n*n>n für n>1
[mm] n!/\wurzel[n]{n}>n!/n [/mm]
damit n!^{1/n}>(n-1)!^{1/(n-1)} beide Seiten hoch n-1.
Damit habt ihr die Monoton wachsende Folge. angenommen es ex. ein N mit n!^{1/n}<N
für alle n dann kommt man schnell auf nen Widerspruch mit n=2N.
zu a) kümmert euch mal um  den Tip.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de