www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwerte e-ähnlicher Folgen
Grenzwerte e-ähnlicher Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte e-ähnlicher Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:59 Sa 30.04.2005
Autor: Berndte2002

Hallo,

habe folgende Aufgabe zu lösen und komme nicht so recht weiter...

Aufgabe:

Benutze  [mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] \bruch{1}{n} )^{n} [/mm] = e um die Grenzwerte der Folgen zu berechnen:

a) (1 + [mm] \bruch{1}{3n} )^{n} [/mm]

b) (1 - [mm] \bruch{1}{n-2} )^{n+5} [/mm]

Zur Lösung hab ich mir so gedacht irgendwie die Folgen so umzuformen, dass Anteile von (1 + [mm] \bruch{1}{n} )^{n} [/mm] vorkommen, was mir aber nicht gelungen ist.
Als Lösung vermutete ich Vielfache von e, aber wenn man die Grenzwerte mal im Taschenrechner ausrechnet kommt man bei a) auf 1,3956... ( entspricht 0,5134.... * e) und bei b) auf 0,3678... (entspricht 0,1353.... * e).  Die sind aber noch nicht mal halbwegs ganzzahlige bzw. rationale Vielfache von e...

Ich hoffe mir kann wer bei der Lösung helfen!

Danke
mfg
Berndte

        
Bezug
Grenzwerte e-ähnlicher Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Sa 30.04.2005
Autor: Max

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Berndte,

natürlich kommen Vielfache von $e$ raus - allerdings ist das nicht besonderes weil ja jede Zahl ein Vielfaches von $e$ ist ;-) ($x= \frac{x}{e} \cdot e$).

Tatsächlich sollte man versuchen bei der ersten Folge zumindest mal auf die Form $\left(1+\frac {1}{m}\right)$ zukommen, damit man Ähnlichkeiten zur Folge von $e$ bekommt, d.h. $m=3n$.

Damit erhält man


$\left(1+\frac{1}{3n}\right)^n = \left( 1 +\frac{1}{m}\right)^{\frac{m}{3}}=\left( \left(1+\frac{1}{m}\right)^m\right)^{\frac{1}{3}$

Kannst du jetzt den Grenzwert der Folge bestimmen?
Bei der nächsten Folge kannst du analog vorgehen, allerdings sind die Umformungen ein klitzekleines bisschen schwieriger. Aber du machst das schon!

Gruß Max

Bezug
                
Bezug
Grenzwerte e-ähnlicher Folgen: Alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Sa 30.04.2005
Autor: Berndte2002

Vielen Dank, nun ist alles klar!!!
mfg
Berndte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de