www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Grenzwerte von Funktionen
Grenzwerte von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Funktionen: Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 18:00 Fr 12.05.2006
Autor: Aeryn

Aufgabe
In welchen Punkten x  [mm] \in \IR [/mm] ist f unstetig?
[mm] f(x)=(x^2-4)/(x-2) [/mm] für x [mm] \not= [/mm] 2
        0 für x=2

Hi!
Bin total verzweifelt, ich weiß nicht wie ich das lösen soll. Ein Grund dafür ist, dass ich von dem Sachgebiet noch nie was im Unterricht gehört habe.
Ich bitte inständig um eure hilfe.
Lg Aeryn

        
Bezug
Grenzwerte von Funktionen: Grenzwertbetrachtungen
Status: (Antwort) fertig Status 
Datum: 18:50 Fr 12.05.2006
Autor: Loddar

Hallo Aeryn!


Damit eine Funktion an der Stelle [mm] $x_0$ [/mm] steteig muss folgendes gelten:

[mm] $\limes_{x\rightarrow x_0\uparrow}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow x_0\downarrow}f(x) [/mm] \ = \ [mm] f(x_0)$ [/mm]

In Worten: der linksseitige und der rechtsseitig Grenzwert müssen existieren und übereinstimmen. Ebenso muss damit auch der entsprechende Funktionswert [mm] $f(x_0)$ [/mm] übereinstimmen.


Bei Deiner Funktion ist der einzige kritische Punkt bei [mm] $x_0 [/mm] \ = \ 2$ , da eine Komposition aus stetigen Funktionen ebenfalls wieder stetig ist.

Um sich hier die Arbeit etwas zu vereinfachen, kann man den Funktionsterm für [mm] $x\not=2$ [/mm] vereinfachen zu:

[mm] $\bruch{x^2-4}{x-2} [/mm] \ = \ [mm] \bruch{(x+2)*(x-2)}{(x-2)} [/mm] \ = \ x+2$


Gruß
Loddar


Bezug
        
Bezug
Grenzwerte von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Sa 13.05.2006
Autor: Aeryn

setz ich nun x=0 ein, berechne das ergebnis und fertig?

Bezug
                
Bezug
Grenzwerte von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Sa 13.05.2006
Autor: Denny22

Hallo,

ich bin mir ziemlich sicher, dass die Funktion überall stetig ist. Der Grund dafür ist, dass ich zunächst die Kürzungsvorgehensweise vom Loddar verwende. Dann hat man noch

$f(x) = x + 2$

Und diese Funktion ist nach Analysis I eine stetige Funktion, undzwar auf ganz [mm] $\IR$, [/mm] d.h. sie lässt sich in den Punkt (0,2) stetig fortsetzten (da sie laut Aufgabenstellung in 2 nicht definiert war) und man erhält somit eine stetige Funktion, ohne Unstetigkeitsstellen! .

Ciao

Bezug
                        
Bezug
Grenzwerte von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:51 Sa 13.05.2006
Autor: mathemaduenn

Hallo Denny22,
Die Funktion läßt sich stetig fortsetzen wg. [mm] f(2)=0\not=4 [/mm] ist sie aber nicht stetig.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de