www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte von Funktionen
Grenzwerte von Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mo 28.04.2008
Autor: jboss

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Bestimmen Sie die folgenden Grenzwerte von Funktionen:
a) $\limes_{x\rightarrow0} e^{-\bruch{1}{x^2}$
b) $\limes_{x\rightarrow0} \wurzel[x]{1 + x}$
c) $\limes_{x\rightarrow0} \wurzel[x^2]{x}$
d) $\limes_{x\rightarrow\infty} (sin \wurzel{x + 1} - sin \wurzel{x} )$
e) $\limes_{x\rightarrow\infty} x^{16} e^{-x} cos x$

Hallo liebe Mathefreunde,
habe einige Fragen zur Bestimmung der Grenzwerte von Funktionen. Bin eigentlich der Meinung, dass ich das Thema gut verstanden habe. Hoffe daher, dass meine Bemühungen zur obigen Aufgabe nicht total daneben sind ;-)

Zu bestimmen sind also die Grenzwerte von Funktionen an einer Stelle $x_{0}$. Bei den ersten 3 Teilaufgaben ist $x_{0} = 0$. Falls ein Grenzwert an dieser Stelle existiert, so muss sowohl sowohl linksseitiger als auch rechtsseitiger Grenzwert existieren und diese beiden Grenzwerte müssen gleich sein.
Also definiere ich 2 Folgen:
1. $(x_{n})_{n\in\IN} := \bruch{1}{n}$  mit $\limes_{n\rightarrow\infty} x_{n} = x_{0}$
2. $(y_{n})_{n\in\IN}:= -\bruch{1}{n}$  mit $\limes_{n\rightarrow\infty} y_{n} = x_{0}$

Beispielhaft meine Lösung zu Aufgabenteil a. Wenn das Ergebnis stimmt, sollte ich es auch für b und c richtig gemacht haben :-)

Rechtsseitiger Grenzwert:
$\limes_{n\rightarrow\infty} f(x_{n}) = \limes_{n\rightarrow\infty} f(\bruch{1}{n}) = e^{-n^2} = \bruch{1}{e^{n^2}} = 0$

Linksseitiger Grenzwert:
$\limes_{n\rightarrow\infty} f(y_{n}) = \limes_{n\rightarrow\infty} f(- \bruch{1}{n}) = e^{-n^2} = \bruch{1}{e^{n^2}} = 0$

Da links- und rechtseitiger Grenzwert gleich sind, hat die Funktion an der Stelle $x_{0} = 0$ den Limes $0$.

Soweit so richtig? Ich hoffe schon :-)

Gruss Jakob


        
Bezug
Grenzwerte von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mo 28.04.2008
Autor: MathePower

Hallo jboss,

> Bestimmen Sie die folgenden Grenzwerte von Funktionen:
>  a) [mm]\limes_{x\rightarrow0} e^{-\bruch{1}{x^2}[/mm]
>  b)
> [mm]\limes_{x\rightarrow0} \wurzel[x]{1 + x}[/mm]
>  c)
> [mm]\limes_{x\rightarrow0} \wurzel[x^2]{x}[/mm]
>  d)
> [mm]\limes_{x\rightarrow\infty} (sin \wurzel{x + 1} - sin \wurzel{x} )[/mm]
>  
> e) [mm]\limes_{x\rightarrow\infty} x^{16} e^{-x} cos x[/mm]
>  Hallo
> liebe Mathefreunde,
>  habe einige Fragen zur Bestimmung der Grenzwerte von
> Funktionen. Bin eigentlich der Meinung, dass ich das Thema
> gut verstanden habe. Hoffe daher, dass meine Bemühungen zur
> obigen Aufgabe nicht total daneben sind ;-)
>  
> Zu bestimmen sind also die Grenzwerte von Funktionen an
> einer Stelle [mm]x_{0}[/mm]. Bei den ersten 3 Teilaufgaben ist [mm]x_{0} = 0[/mm].
> Falls ein Grenzwert an dieser Stelle existiert, so muss
> sowohl sowohl linksseitiger als auch rechtsseitiger
> Grenzwert existieren und diese beiden Grenzwerte müssen
> gleich sein.
> Also definiere ich 2 Folgen:
>  1. [mm](x_{n})_{n\in\IN} := \bruch{1}{n}[/mm]  mit
> [mm]\limes_{n\rightarrow\infty} x_{n} = x_{0}[/mm]
> 2. [mm](y_{n})_{n\in\IN}:= -\bruch{1}{n}[/mm]  mit
> [mm]\limes_{n\rightarrow\infty} y_{n} = x_{0}[/mm]
>
> Beispielhaft meine Lösung zu Aufgabenteil a. Wenn das
> Ergebnis stimmt, sollte ich es auch für b und c richtig
> gemacht haben :-)
>  
> Rechtsseitiger Grenzwert:
>  [mm]\limes_{n\rightarrow\infty} f(x_{n}) = \limes_{n\rightarrow\infty} f(\bruch{1}{n}) = e^{-n^2} = \bruch{1}{e^{n^2}} = 0[/mm]
>  
> Linksseitiger Grenzwert:
>  [mm]\limes_{n\rightarrow\infty} f(y_{n}) = \limes_{n\rightarrow\infty} f(- \bruch{1}{n}) = e^{-n^2} = \bruch{1}{e^{n^2}} = 0[/mm]
>  
> Da links- und rechtseitiger Grenzwert gleich sind, hat die
> Funktion an der Stelle [mm]x_{0} = 0[/mm] den Limes [mm]0[/mm].
>  
> Soweit so richtig? Ich hoffe schon :-)

Ja. [ok]

>  
> Gruss Jakob
>    

Gruss
MathePower

Bezug
                
Bezug
Grenzwerte von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 28.04.2008
Autor: jboss

Hallo MathePower,
danke für deine schnelle Antwort.
Habe jedoch noch Probleme mit Aufgabenteil d. Ich denke die Funktion konvergiert gegen 0.

Sei [mm] $x_n$ [/mm] eine beliebige Folge mit [mm] $\limes_{n\rightarrow\infty} x_n [/mm] = [mm] +\infty$ [/mm]
$ [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n + 1} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$  = [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n(1 + \bruch{1}{x_n})} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$  = [mm] \limes_{n\rightarrow\infty} [/mm] (sin [mm] \wurzel{x_n}\underbrace{\wurzel{1 + \bruch{1}{x_n}}}_{\to 1} [/mm] - sin [mm] \wurzel{x_n} [/mm] )$
$ = 0$

Stimmt das so?

Gruss Jakob


Bezug
                        
Bezug
Grenzwerte von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 28.04.2008
Autor: MathePower

Hallo jboss,

> Hallo MathePower,
>  danke für deine schnelle Antwort.
> Habe jedoch noch Probleme mit Aufgabenteil d. Ich denke die
> Funktion konvergiert gegen 0.
>
> Sei [mm]x_n[/mm] eine beliebige Folge mit
> [mm]\limes_{n\rightarrow\infty} x_n = +\infty[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} (sin \wurzel{x_n + 1} - sin \wurzel{x_n} )[/mm]
>  
> [mm]= \limes_{n\rightarrow\infty} (sin \wurzel{x_n(1 + \bruch{1}{x_n})} - sin \wurzel{x_n} )[/mm]
> [mm]= \limes_{n\rightarrow\infty} (sin \wurzel{x_n}\underbrace{\wurzel{1 + \bruch{1}{x_n}}}_{\to 1} - sin \wurzel{x_n} )[/mm]
>  
> [mm]= 0[/mm]
>  
> Stimmt das so?

Ich glaube nicht

Schreibe den Ausdruck mal so:

[mm]\sin\left(\wurzel{x+1}\right)-\sin\left(\wurzel{x}\right)=\sin\left(a+b\right)-\sin\left(a-b\right)=2*\sin\left(b\right)*\cos\left(a\right)[/mm]

>  
> Gruss Jakob
>  

Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de