www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertsätze
Grenzwertsätze < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertsätze: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:14 Fr 17.11.2006
Autor: Maik314

Hallo Leute,

Ich kenn zwar die Grenzwertsätze, hab aber noch nirgendwo gesehen, wie man sie alle herleitet.
Ich würde mich sehr freuen, wenn mir diese jemand erklären kann oder sagen kann, wo man sie findet^^

Ich danke schonmal im Vorraus.

MFG

Maik314

        
Bezug
Grenzwertsätze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Sa 18.11.2006
Autor: angela.h.b.

Hallo,

könntest Du etwas spezifizieren, was Du mit "Grenzwertsätze" meinst?

Es gibt so furchtbar viele Sätze über Grenzwerte...

Gruß v. Angela

Bezug
                
Bezug
Grenzwertsätze: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:59 So 19.11.2006
Autor: Maik314

Hm ok, das war mir jetzt nicht so klar, sry.

Unter den Grenzwertsätzen verstehe ich folgende:
(Gibt es denn noch andere?)

[mm] \limes_{x\rightarrow x_{0}} [f_{1}(x)+f_{2}(x)] [/mm] = [mm] \limes_{x\rightarrow x_{0}} f_{1}(x)+\limes_{x\rightarrow x_{0}} f_{2}(x) [/mm]

[mm] \limes_{x\rightarrow x_{0}} [f_{1}(x)-f_{2}(x)] [/mm] = [mm] \limes_{x\rightarrow x_{0}} f_{1}(x)-\limes_{x\rightarrow x_{0}} f_{2}(x) [/mm]

[mm] \limes_{x\rightarrow x_{0}} [f_{1}(x)*f_{2}(x)] [/mm] = [mm] \limes_{x\rightarrow x_{0}} f_{1}(x)*\limes_{x\rightarrow x_{0}} f_{2}(x) [/mm]

[mm] \limes_{x\rightarrow x_{0}}\bruch{f_{1}(x)}{f_{2}(x)} [/mm] = [mm] \bruch{\limes_{x\rightarrow x_{0}} f_{1}(x)}{\limes_{x\rightarrow x_{0}} f_{2}(x)} [/mm]


[mm] \limes_{x\rightarrow x_{0}} c^{f(x)}=c^{\limes_{x\rightarrow x_{0}}f(x)} [/mm]

[mm] \limes_{x\rightarrow x_{0}}\wurzel[n]{f(x)}=\wurzel[n]{\limes_{x\rightarrow x_{0}}f(x)} [/mm]

[mm] \limes_{x\rightarrow x_{0}}[f(x)^{n}]=[\limes_{x\rightarrow x_{0}}f(x)]^{n} [/mm]

[mm] \limes_{x\rightarrow x_{0}}[log_{b}f(x)]=log_{b}[\limes_{x\rightarrow x_{0}}f(x)] [/mm]


Is ja alles schön und gut, mich würde nur sehr gern mal interessieren, wie man alle herleitet und beweisen kann, ich habe zu dem bis jetzt nämlich nichts gefunden.
Ich bin dankbar für jede Hilfe, welcher Art auch immer^^

MFG

maik314

Bezug
                        
Bezug
Grenzwertsätze: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 So 19.11.2006
Autor: angela.h.b.


> Unter den Grenzwertsätzen verstehe ich folgende:
> (Gibt es denn noch andere?)

Hallo,

wie gesagt: es gibt lauter Sätze, die sich mit Grenzwerten befassen, z.B. damit, unter welchen Bedingungen "irgendwelche Gebilde" überhaupt Grenzwerte haben.

Man kann Grenzwerte von Funktionen betrachten, von Folgen, von Reihen. Zwar hängt das alles miteinander zusammen, aber für die Beantwortung macht es schon einen Unterschied.

Dich beschäftigen also im Moment Grenzwerte von Funktionen.

Die erste Frage ist: was ist der Grenzwert einer Funktion? Wie ist das definiert?
Ich möchte nun hier kein Lehrbuch schreiben, es gibt Leute, die es schon getan haben und besser können als ich, daher nur einige Hinweise:

Wenn Du Dir die def. des Grenzwertes von Funktionen anschaust, wirst Du feststellen, daß sie auf Grenzwerten von Folgen fußen. Und genau auf die stützen sich dann auch die Beweise.

Wenn Du sie nachlesen möchtest, leihst Du Dir am besten ein Lehrbuch für Studienanfänger aus, die heißen meist "Analysis 1"  oder  "Einführung in die Analysis". Du scheinst ja noch die Schule zu besuchen: da könntest Du auch einen netten Mathelehrer fragen, ob er Dir seins mal leiht.
Du kannst darin alles (und noch viel mehr!) nachlesen, und wenn Du dann an einer konkreten Stelle hängst, kann Dir hier weitergeholfen werden.

Es kommt eben auch ein bißchen daruf an, wie groß Deine Vorkenntnisse sind.
Zunächst wirst Du Dich mitFolgen und ihren Grenzwerten beschäftigen müssen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de