www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Grenzwertsätze
Grenzwertsätze < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertsätze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Di 08.02.2011
Autor: wolle238

Aufgabe
[mm] $X_n$ [/mm] sei eine $B(n, v)$-verteilte Zufallsgröße, $n [mm] \in \IN$, [/mm] $0 < v < 1$. Weiterhin sei [mm] $\alpha [/mm] > - [mm] \frac{1}{2}$. [/mm] Zeigen Sie:
(a) [mm] $\lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \ge v + n^{\alpha} \right) [/mm] = 0$
(b) [mm] $\lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \ge v - n^{\alpha} \right) [/mm] = 1$


Hey ihr!

Ich hänge bei der Aufgabe... :(

Bisher habe ich:
[mm] $\mathbb{P} (\{ X_n = k \}) [/mm] = [mm] \vektor{n \\ k} v^k [/mm] (1 - [mm] v)^{n-k}$ [/mm] (Definition Binomialverteilung)

Dann gilt ja:
[mm] $\mathbb{P} (\{ X_n \ge k \}) [/mm] = [mm]  \summe_{i=k}^{n} \vektor{n \\ i} v^i [/mm] (1 - [mm] v)^{n-i}$ [/mm]

Wenn ich mir jetzt (a) angucke, dann erhalte ich:

[mm] $\lim_{n \rightarrow \infty} \mathbb{P} \left( \bruch{X_n}{n} \ge v + n^{\alpha} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n \ge n (v + n^{\alpha}) \right) [/mm]  = [mm] \lim_{n \rightarrow \infty} \summe_{i=n(v+n^{\alpha})}^{n} \vektor{n \\ i} v^i [/mm] (1 - [mm] v)^{n-i} [/mm] = 0$, da $n(v + [mm] n^{\alpha}) [/mm]  > n$

bei (b) erhalte ich dann:
[mm] $\lim_{n \rightarrow \infty} \mathbb{P} \left( \bruch{X_n}{n} \ge v - n^{\alpha} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n \ge n (v - n^{\alpha}) \right) [/mm]  = [mm] \lim_{n \rightarrow \infty} \summe_{i=n(v-n^{\alpha})}^{n} \vektor{n \\ i} v^i [/mm] (1 - [mm] v)^{n-i}$ [/mm]


Ich denke, ich hab mal wieder voll den falschen Ansatz. Ich hab auch versucht einen passenden Grenzwertsatz zu finden, aber war nix dabei! :(

Kann mir einer Tipps geben?

Viel Dank für eure Hilfe!!

Gruß, Julia

        
Bezug
Grenzwertsätze: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Di 08.02.2011
Autor: Fry

Hey,

wende Tschebyscheff an. Dann kommst du schnell ans Ziel.
[mm] E(X_n)=? [/mm]
Bedenke: [mm] P(X_n-E(X_n)>b)\le P(|X_n-E(X_n)|>b) [/mm]

Gruß
Fry


Bezug
                
Bezug
Grenzwertsätze: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:28 Di 08.02.2011
Autor: wolle238

Danke für den Tipp.... Hatte mir das zwar angeguckt, bin aber nie darauf gekommen, dass ich das darauf anwenden kann... :)

Es gilt ja [mm] $\mathbb{E}(X_n) [/mm] = n [mm] \cdot [/mm] v$ und [mm] $\mathbb{V}(X_n) [/mm] = n [mm] \cdot [/mm] v(1-v)$

Somit folgt bei (a)

$ [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \ge v - n^{\alpha} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n \ge n \cdot v - n^{\alpha+1} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n - nv \ge n^{\alpha +1 } \right) \le \lim_{n \rightarrow \infty} \mathbb{P}\left( \left| X_n - nv \right| \ge n^{\alpha + 1} \right) \overset{Tschebyschev}{\le} \lim_{n \rightarrow \infty} \bruch{\mathbb{V}}{n^{2(\alpha + 1)}} [/mm] =  [mm] \lim_{n \rightarrow \infty} \bruch{nv(1-v)}{n^{2(\alpha+1)}} [/mm] = 0$
Wir können ja Tschebyschev nur anwenden, wenn [mm] $n^{\alpha + 1} [/mm] > 0$ gilt. Das ist ja hier der Fall, da $n [mm] \in \IN$. [/mm]

und bei (b) kann ja Tschebyschev nicht angewandt werden, da ja folgt:
$ [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \ge v - n^{\alpha} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n - nv \ge - n^{\alpha +1 } \right)$ [/mm] und $- [mm] n^{\alpha + 1} [/mm] < 0$. :(

Ich verzweifle... :( Da denkt man, dass man es verstanden hat und dann kommt das nächste Problem.... Kann das nicht alles einfach sein?


EDIT: IDEE:
Ich hab mir das jetzt so überlegt:
$ [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \ge v - n^{\alpha} \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( X_n - nv \ge - n^{\alpha +1 } \right) [/mm] = [mm] \lim_{n \rightarrow \infty} \mathbb{P}\left( - X_n + nv < n^{\alpha +1 } \right) \leq \lim_{n \rightarrow \infty} \mathbb{P}\left( \left| X_n - nv \right| \le n^{\alpha +1 } \right) \overset{Tschebyschev}{\le} \lim_{n \rightarrow \infty} [/mm] 1 - [mm] \bruch{n v (1-v)}{n^{\alpha + 1}} [/mm] = 1 - [mm] \lim_{n \rightarrow \infty} \bruch{v(1-v)}{n^{\alpha}} [/mm] = 1 - 0 = 1$

Das dürfte doch jetzt passen, oder? Darf ich die Umformungen machen: [mm] $X_n [/mm] - nv [mm] \geq -n^{\alpha + 1} \Leftrightarrow [/mm] - [mm] X_n [/mm] + nv < [mm] n^{\alpha+1} [/mm] $ und $nv - [mm] X_n \le [/mm] |nv - [mm] X_n| [/mm] = [mm] |X_n [/mm] - nv|$?



Bezug
                        
Bezug
Grenzwertsätze: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Do 10.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Grenzwertsätze: Markov-Ungleichung
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 08.02.2011
Autor: wolle238

Aufgabe
Sei [mm] $X_n \sim [/mm] B(n,p), 0 < p < 1, n [mm] \in \IN$. [/mm] Zeigen Sie [mm] $\forall \varepsilon [/mm] > 0, n [mm] \uparrow \infty$ [/mm]

1. [mm] $\mathbb{P} \left( \bruch{X_n}{n} \le p - \varepsilon \right) \rightarrow [/mm] 0$
2. [mm] $\mathbb{P} \left( \bruch{X_n}{n} \le p + \varepsilon \right) \rightarrow [/mm] 1$
3. [mm] $\mathbb{P} \left( \bruch{X_n}{n} \le p \right) \rightarrow \bruch{1}{2}$ [/mm]



Noch ein paar Aufgaben in diese Richtung.

bei 1. stehe ich wieder vor dem Problem, dass $- [mm] \varepsilon \cdot [/mm] n < 0$ gilt.
Also bei der Umformung
[mm] $\lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \le p - \varepsilon \right) [/mm]  = [mm] \lim_{n \rightarrow \infty} \mathbb{P} \left( X_n - n \cdot p \le - \varepsilon \cdot n \right)$ [/mm]

bei 2. erhalte ich
[mm] $\lim_{n \rightarrow \infty} \mathbb{P}\left( \bruch{X_n}{n} \le p + \varepsilon \right) [/mm]  = [mm] \lim_{n \rightarrow \infty} \mathbb{P} \left( X_n - n \cdot p \le \varepsilon \cdot n \right) \le \lim_{n \rightarrow \infty} \mathbb{P} \left( \left| X_n - n \cdot p \right| \le \varepsilon \cdot n \right) \overset{Tschebyschev}{=} \lim_{n \rightarrow \infty} [/mm] 1 - [mm] \bruch{np(1-p)}{\varepsilon^2 n^2} [/mm] =  1 - [mm] \lim_{n \rightarrow \infty} \bruch{np(1-p)}{\varepsilon^2 n^2} [/mm] = 1 - 0 = 1 $
Düfte so stimmen, oder?

bei 3. kann ich ja die Markov-Ungleichung anwenden.
[mm] $\lim_{n \rightarrow \infty} \mathbb{P} \left( \bruch{X_n}{n} \le p \right) \overset{Markov}{\le} \lim_{n \rightarrow \infty} \bruch{E(g(X_n))}{g(p)}$ [/mm]
für eine beliebige monoton steigende Funktion $g: [mm] \IR \rightarrow \IR$ [/mm] mit [mm] $\mathbb{E}[g(X)] [/mm] < + [mm] \infty$. [/mm]
Darf ich mir jetzt irgendeine Funktion auswählen?? Wenn ich jetzt einfach $g(x) = 2 [mm] \cdot [/mm] x [mm] \cdot [/mm] n$ wähle, erhalte ich ja:
$ [mm] \lim_{n \rightarrow \infty} \bruch{E(g(X_n))}{g(p)} [/mm] = [mm] \lim_{n \rightarrow \infty} \bruch{np}{2np} [/mm] = [mm] \bruch{1}{2}$... [/mm]
Darf ich das einfach so machen?? Da hab ich mir die Funktion ja einfach zusammen gesetzt! Bin ganz verwirrt...

AHHH... Mist... kann da ja doch nicht Markov anwenden! :( Oder gilt wieder: [mm] $\mathbb{P}(\{X_n < a \}) \le [/mm] 1 - [mm] \bruch{\mathbb{E}[g(X)]}{g(a)}$ [/mm] wie auch bei Tschebyschev (Tschebyscheff, Tschebyschow, oder wie auch immer)?


Bezug
                
Bezug
Grenzwertsätze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:04 Mo 14.02.2011
Autor: Walde

Hi wolle,

ich kann was zur letzten Sache sagen:

Wenn g(x)=2*x*n, dann [mm] g(\bruch{X_n}{n})=2*X_n. [/mm] Du hast also einen Faktor 2 im Zähler vergessen. Prinzipiell dürftest du aber jedes g nehmen, dass die nötigen Anforderungen erfüllt.

Vorschlag: betrachte [mm] P(\bruch{X_n}{n}\le p)=P(X_n\le n*p)=P(X_n-n*p\le 0)=P(\bruch{X_n-n*p}{\wurzel{n*p*q}}\le [/mm] 0) und benutze den zentralen GWS.

LG walde

Bezug
                        
Bezug
Grenzwertsätze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:31 Mo 14.02.2011
Autor: Walde

Für die erste Aufgabe kannste mal das hier durchlesen, wenm du nichts besseres findest. Mit der Aussage des Satzes bzw (der)Aufgabe, der/die da gezeigt wird müsste es gehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de