www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Größte Eigenwerte
Größte Eigenwerte < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größte Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 06.12.2011
Autor: MatheStudi7

Aufgabe
Für beliebige Matrizen A [mm] \in \IR^{n,n} [/mm] sei H(A) := [mm] \bruch{1}{2}(A+A^{T}) [/mm]
i) Zeigen Sie, dass die Matrix [mm] H(A)^2-H(A^2) [/mm] positiv semidefinit ist.
ii) Folgern Sie aus i), dass [mm] \lambda_{max}(H(A)^2) \ge \lambda_{max}(H(A^2)) [/mm]

Hallo Matheraum,

die i) habe ich nachgewiesen und die ii) habe ich auch fast, es fehlt mir nur der letzte Schritt:

aus i) folgt:

    $ [mm] x^{T}(H(A)^2-H(A^2))x \ge [/mm] 0 $
$ [mm] x^{T}(H(A)^2)x [/mm] - [mm] x^{T}(H(A^2))x \ge [/mm] 0 $
          $ [mm] x^{T}(H(A)^2)x \ge x^{T}(H(A^2))x [/mm] $
          $ [mm] \bruch{x^{T}(H(A)^2)x}{x^{T}x} \ge \bruch{x^{T}(H(A^2))x}{x^{T}x} [/mm] $

Jetzt hat mir jmd gesagt, der nächste Schritt würde wie folgt lauten:

$ [mm] max_{x \not= 0} \bruch{x^{T}(H(A)^2)x}{x^{T}x} [/mm] = [mm] \lambda_{max} \ge \lambda_{max} [/mm] = [mm] max_{x \not= 0}\bruch{x^{T}(H(A^2))x}{x^{T}x} [/mm] $

Was ich hier nicht verstehe ist: der Vektor, der die linke Seite maximiert muss doch nicht zwangsläufig der Gleiche sein, der die rechte Seite maximiert, oder irre ich mich da?
Denn am Anfang habe ich ja nur ein [mm] x^{T} [/mm] bzw x und das muss am Schluss ja immernoch das selbe sein...


Ciao

        
Bezug
Größte Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 06.12.2011
Autor: rainerS

Hallo!

> Für beliebige Matrizen A [mm]\in \IR^{n,n}[/mm] sei H(A) :=
> [mm]\bruch{1}{2}(A+A^{T})[/mm]
>  i) Zeigen Sie, dass die Matrix [mm]H(A)^2-H(A^2)[/mm] positiv
> semidefinit ist.
>  ii) Folgern Sie aus i), dass [mm]\lambda_{max}(H(A)^2) \ge \lambda_{max}(H(A^2))[/mm]
>  
> Hallo Matheraum,
>  
> die i) habe ich nachgewiesen und die ii) habe ich auch
> fast, es fehlt mir nur der letzte Schritt:
>  
> aus i) folgt:
>  
> [mm]x^{T}(H(A)^2-H(A^2))x \ge 0[/mm]
>  [mm]x^{T}(H(A)^2)x - x^{T}(H(A^2))x \ge 0[/mm]
>  
>           [mm]x^{T}(H(A)^2)x \ge x^{T}(H(A^2))x[/mm]
>            
> [mm]\bruch{x^{T}(H(A)^2)x}{x^{T}x} \ge \bruch{x^{T}(H(A^2))x}{x^{T}x}[/mm]
>  
> Jetzt hat mir jmd gesagt, der nächste Schritt würde wie
> folgt lauten:
>  
> [mm]max_{x \not= 0} \bruch{x^{T}(H(A)^2)x}{x^{T}x} = \lambda_{max} \ge \lambda_{max} = max_{x \not= 0}\bruch{x^{T}(H(A^2))x}{x^{T}x}[/mm]
>  
> Was ich hier nicht verstehe ist: der Vektor, der die linke
> Seite maximiert muss doch nicht zwangsläufig der Gleiche
> sein, der die rechte Seite maximiert, oder irre ich mich
> da?

Richtig. Deswegen musst du einen Schritt mehr machen. Nehmen wir an, dass [mm] $x_1$ [/mm] die linke Seite maximiert, und [mm] $x_2$ [/mm] die rechte Seite.

Da [mm] $x_1$ [/mm] die linke Seite maximiert, gilt

[mm] \lambda_{\textrm{max}}(H(A)^2) = \bruch{x_1^{T}(H(A)^2)x_1}{x_1^{T}x_1} \ge \bruch{x_2^{T}(H(A)^2)x_2}{x_2^{T}x_2} [/mm] ,

und das ist mit der bereits gezeigten Ungleichung

[mm] \ge \bruch{x_2^{T}(H(A^2))x_2}{x_2^{T}x_2} = \lambda_{\textrm{max}}(H(A^2)) [/mm] .

  Viele Grüße
    Rainer



Bezug
                
Bezug
Größte Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:00 Mi 07.12.2011
Autor: MatheStudi7

Alles klar,
Danke Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de