www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grundbegriffe der Topologie
Grundbegriffe der Topologie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundbegriffe der Topologie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:19 Mo 17.05.2004
Autor: mclain23-5

Hi,
ich kann nichts mit der Epsilon-Umgebung anfangen:
BΕ(x)=(y/yeR hoch n und Betrag von x-y ist kleiner als Εpsilon).

Die Erklärung im Skript lautet dabei: Euklidische Metrik, die zu x einen Abstand von weniger als Ε aufweist.

Beispiele: B0,5(3)=(2,5, 3,5)

x= 0 e R hoch 2 ist B1(x)=(y/ye R hoch 2 und y1+y2 zum Quadrat ist kleiner als 1)

Darauf baut dann die Berechnung von innerem Punkt, Randpunkt, offene Menge, abgeschlossene Menge, beschränkte Menge, kompakte Menge, konvexe Menge.

Danke im Voraus!

        
Bezug
Grundbegriffe der Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mo 17.05.2004
Autor: Paulus

Hallo McLain

Willkommen im Matheraum :-)

> Hi,
>  ich kann nichts mit der Epsilon-Umgebung anfangen:
>  BΕ(x)=(y/yeR hoch n und Betrag von x-y ist kleiner
> als Εpsilon).
>
> Die Erklärung im Skript lautet dabei: Euklidische Metrik,
> die zu x einen Abstand von weniger als Ε aufweist.
>  

[notok] Ich kann aber ebensowenig mit deiner Frage anfangen.

Mir ist nicht klar, welche Teile der Definition denn für dich nicht klar sind. Da kommen ja soooo viele Begriffe vor.

Versuch mir also zunächst mal folgendes zu beantworten:

a) Was verstehst du unter
[mm] $\mathbb{R}$ [/mm]
[mm] $\mathbb{R}^2$ [/mm]
[mm] $\mathbb{R}^3$ [/mm]
[mm] $\mathbb{R}^n$ [/mm]

b) Was ist denn eine Euklidische Metrik? Speziell: wie berechnet sich denn der Abstand von $x-y$
in [mm] $\mathbb{R}$ [/mm]
oder in [mm] $\mathbb{R}^2$ [/mm]
oder in [mm] $\mathbb{R}^3$ [/mm]
oder in [mm] $\mathbb{R}^n$ [/mm]

Vielleicht findest du nach dem Beantworten dieser Fragen sogar selber den Zugang zu der obigen Definition!

Lass es mich einfach wissen. Wenn du überhaupt nichts mit meinen Gegenfragen anfangen kannst, meldest du dich selbstverständlich auch wieder! ;-)

Mit lieben Grüssen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de