www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Grundlagen
Grundlagen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundlagen: Basiswissen
Status: (Frage) beantwortet Status 
Datum: 11:52 So 15.07.2007
Autor: KnockDown

Hi,

wie manch einer gesehen hat, versuche ich mich z. Z. u. a. an Wahrscheinlichkeitsaufgaben. Zugegeben, die sind eigentlich nicht so schwer, dennoch scheitere ich an einigen Teilaufgaben. Ich merke immer wieder, dass mir Grundlagen fehlen und zwar zu folgenden Themen:

1. Wann kann ich Wahrscheinlichkeiten multiplizieren?

2. Wann kann ich Wahrscheinlichkeiten addieren?

3. Wann nehme ich etwa [mm] $x^n$, [/mm] was ist in diesem fall das x, was das n?

4. Wann verwende ich die$\ !n$ Fakultät?

5. Wann verwende ich [mm] $\vektor{n \\ k}$, [/mm] was ist k, was ist n?

6. Gibt es Fälle in denen ich Wahrscheinlichkeiten dividiere oder subtrahiere?

7. Gibt es Fälle in denen ich nur mit den "Gegenwahrscheinlichkeiten" rechnen kann und nicht über die eigentliche "Wahrscheinlichkeit" ans Ziel komme? (als Bsp.Wahrscheinlichkeit=zu gewinnen, Gegenwahrscheinlichkeit=zu verlieren)

8. Gibt es sonst noch etwas, was ich wissen müsste um "einfache" Aufgaben lösen zu können?


Ich bin über jede beantworte Frage dankbar. Am besten ist auch, wenn ihr immer min. ein kleines Beispiel dazu gebt. (Bei uns kommen oft Würfelaufgaben und Kartenaufgaben dran)




Danke



Grüße Thomas

        
Bezug
Grundlagen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 So 15.07.2007
Autor: Somebody


> Hi,
>  
> wie manch einer gesehen hat, versuche ich mich z. Z. u. a.
> an Wahrscheinlichkeitsaufgaben. Zugegeben, die sind
> eigentlich nicht so schwer, dennoch scheitere ich an
> einigen Teilaufgaben. Ich merke immer wieder, dass mir
> Grundlagen fehlen und zwar zu folgenden Themen:
>  
> 1. Wann kann ich Wahrscheinlichkeiten multiplizieren?

Sind $A$ und $B$ unabhängige Ereignisse, so gilt [mm] $\mathrm{P}(A\cap B)=\mathrm{P}(A)\cdot \mathrm{P}(B)$. [/mm] Unabhängigkeit von Ereignissen kann oft aus der Aufgabenstellung erkannt werden.

> 2. Wann kann ich Wahrscheinlichkeiten addieren?

Sind [mm] $A_1,\ldots,A_n$ [/mm] sich paarweise ausschliessende Ereignisse, so gilt [mm] $\mathrm{P}(A_1\cup \ldots \cup A_n)=\mathrm{P}(A_1)+\cdots+\mathrm{P}(A_n)$. [/mm]
(gilt sogar für abzählbare Familien [mm] $(A_n)_{n\in\IN}$ [/mm] von sich paarweise ausschliessenden Ereignissen (= paarweise disjunkten Mengen von Ergebnissen eines Zufallsexperiments).
Schliessen sich die Ereignisse nicht paarweise gegenseitig aus, dann wirds komplizierter ("Ein-Auschluss-Formel"). Im einfachsten Fall gilt etwa für beliebige Ereignisse $A$,$B$: [mm] $\mathrm{P}(A\cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A\cap [/mm] B)$.

> 3. Wann nehme ich etwa [mm]x^n[/mm], was ist in diesem fall das x,
> was das n?

Ich kann nur raten: Deine Frage ist soooo nebulös formuliert. Wird etwa ein Zufallsexperiment $n$ mal wiederholt und sind die Ergebnisse dieser Wiederholungen unabhängig und identisch verteilt, so gilt, dass die Wahrscheinlichkeit, dass z.B. das Ereigniss $X$ $n$ mal eintritt, gleich [mm] $\mathrm{P}(X)^n$ [/mm] ist. $n$ wäre also die Anzahl (unabhängige) Wiederholungen des selben Zufallsexperiments und $x$ die Wahrscheinlichkeit [mm] $\mathrm{P}(X)$, [/mm] dass das Ereignis $X$ bei einmaliger Ausführung dieses Zufallsexperiments eintritt.

> 4. Wann verwende ich die[mm]\ !n[/mm] Fakultät?

Dies ist eine Frage zur Kombinantorik, nehme ich einmal an. $n$ Objekte lassen sich auf $n!$ verschiedene Arten in einer bestimmten Reihenfolge anordnen. Andere Betrachtungsweise: $n$ Elemente lassen sich aus einer $n$-elementigen Menge auf $n!$ Arten auswählen (Auswahl ohne Wiederholung, unter Berücksichtigung der Reihenfolge der Auswahl).

> 5. Wann verwende ich [mm]\vektor{n \\ k}[/mm], was ist k, was ist
> n?

Zum Beispiel: Eine $n$-elementige Menge hat genau [mm] $\binom{n}{k}$ [/mm] $k$-elementige Teilmengen. (Auswahl ohne Wiederholung und ohne Berücksichtigung der Reihenfolge der Auswahl.)

> 6. Gibt es Fälle in denen ich Wahrscheinlichkeiten
> dividiere oder subtrahiere?

Etwa bei der bedingten Wahrscheinlichkeit: der Wahrscheinlichkeit, dass das Ereignis $A$ eintritt, unter der Voraussetzung, dass das Ereignis $B$ eintritt (eingetreten ist): [mm] $\mathrm{P}(A|B)=\frac{\mathrm{P}(A\cap B)}{\mathrm{P}(B)}$. [/mm]

> 7. Gibt es Fälle in denen ich nur mit den
> "Gegenwahrscheinlichkeiten" rechnen kann und nicht über die
> eigentliche "Wahrscheinlichkeit" ans Ziel komme?

Theoretisch nein, praktisch vermutlich schon.

> (als
> Bsp.Wahrscheinlichkeit=zu gewinnen,
> Gegenwahrscheinlichkeit=zu verlieren)
>  
> 8. Gibt es sonst noch etwas, was ich wissen müsste um
> "einfache" Aufgaben lösen zu können?
> Ich bin über jede beantworte Frage dankbar. Am besten ist
> auch, wenn ihr immer min. ein kleines Beispiel dazu gebt.

(Zuviel Arbeit für mich - zuwenig für Dich.)
Sowas hast Du sicher entweder in einem Lehrbuch oder in Deinen Notizen aus dem Unterricht. Falls nicht: siehe die online Version des "Basiswissen Mathematik Abitur" Buches von Duden/Paetec []http://www.paetec.de/verlag/flash_book/978-3-89818-080-1/book.html?actLogo=350 ab Seite 350. Index ab Seite 452, Inhaltsverzeichnis ab Seite 3.

> (Bei uns kommen oft Würfelaufgaben und Kartenaufgaben
> dran)

Also hast Du bereits passendes Übungsmaterial bzw. passende Aufgaben. Wenn Du diese Aufgaben alle lösen kannst, bist Du auch auf die Prüfung vorbereitet.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de