www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Grundlagen Gruppen
Grundlagen Gruppen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundlagen Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:19 Do 21.09.2006
Autor: verachris3

Aufgabe
  Es sei $ [mm] G:=\IR^{2}\ \{0,0\} [/mm] $ die Menge aller geordneten Paare (x,y) $ [mm] \in \IR^{2}\ \{0,0\} [/mm] $ mit reelen Zahlen $ [mm] x,y,x^{2}+y^{2}>0. [/mm] $ Wir betrachten die Verknüpfung $ [mm] \circ, [/mm] $ die durch

$ [mm] \forall(x,y),(u,v) \in [/mm] $ G: $ [mm] (x,y)\circ(u,v) [/mm] $ := (x [mm] \* [/mm] u - y [mm] \* [/mm] v , x [mm] \* [/mm] v + y [mm] \* [/mm] u)

definiert ist. Zeigen sie $ [mm] (G,\circ) [/mm] $ ist eine abelsche Gruppe!

Bin gerade dabei mir die Grundlagen über Gruppen selber beizubringen!
Leider hapert es noch ab und zu!
Hierbei bräuchte ich etwas Hilfe!

Ich denke das neutrale Element e ist (1,1)

Aber wie zeige ich jetzt konkret, dass (x,y) [mm] \circ [/mm] e = (x,y) ?

Ähnlich geht es mir mit dem inversen Element:
Natürlich existiert es, aber zeigt man das indem man einfach für (u,v) -> -(x,y) in die Verknüpfung einsetzt?

Vielen Dank für eure Hilfe!

        
Bezug
Grundlagen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Do 21.09.2006
Autor: mathiash

Hallo und guten Tag,

hattest Du schon mal vor kurzem eine Frage dazu gestellt ?

Dann würde dies in den Diskussionsstrang von ''damals'' gehören.

Jedenfalls:

Das neutrale Element ist (1,0),

denn [mm] (1,0)\circ [/mm] (x,y)=_{Def.} [mm] (1\cdot [/mm] x - [mm] 0\cdot y,1\cdot [/mm] v + [mm] 0\cdot [/mm] y) = (x,y).

Um zu (x,y) das Inverse zu konstruieren, musst Du das folgende Gleichungssystem in den Variablen u,v lösen:

[mm] x\cdot [/mm] u - [mm] y\cdot [/mm] v =1
[mm] x\cdot v+y\cdot [/mm] u   =0



Gruss,

Mathias

Bezug
        
Bezug
Grundlagen Gruppen: Nachfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:34 Do 21.09.2006
Autor: verachris3

Aufgabe
  Es sei $ [mm] G:=\IR^{2}\ \{0,0\} [/mm] $ die Menge aller geordneten Paare (x,y) $ [mm] \in \IR^{2}\ \{0,0\} [/mm] $ mit reelen Zahlen $ [mm] x,y,x^{2}+y^{2}>0. [/mm] $ Wir betrachten die Verknüpfung $ [mm] \circ, [/mm] $ die durch

$ [mm] \forall(x,y),(u,v) \in [/mm] $ G: $ [mm] (x,y)\circ(u,v) [/mm] $ := (x*u - y*v , x*v + y*u)

definiert ist. Zeigen sie $ [mm] (G,\circ) [/mm] $ ist eine abelsche Gruppe!

Hallo nochmal,

das mit dem Inversen habe ich verstanden, aber mit dem neutralen Element komm ich noch nicht ganz zurecht, denn ist die 0 nicht in der Definitionsmenge ausgeschlossen?

Bezug
                
Bezug
Grundlagen Gruppen: Geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Do 21.09.2006
Autor: verachris3

Vielen Dank! Habs kapiert!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de