www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Grundrechenarten
Grundrechenarten < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundrechenarten: Eingabefehleranalyse
Status: (Frage) beantwortet Status 
Datum: 12:27 So 13.11.2005
Autor: Karl_Pech

Hallo Leute!


Bei folgender Frage geht es mir um den relativen Fehler bei der Multiplikation. Ich verstehe dort die Abschätzungen nicht. Dazu seien [mm] $\epsilon_1$ [/mm] und [mm] $\epsilon_2$ [/mm] die relativen Eingabefehler von [mm] $x_1$ [/mm] und [mm] $x_2$. [/mm] Es gilt also [mm] $\widetilde{x}_i [/mm] := [mm] x_i [/mm] + [mm] \epsilon_ix_i$ [/mm] für $i = 1,2$.

Sei [mm] $f\left(x_1,x_2\right) [/mm] := [mm] x_1x_2$. [/mm] Wir schätzen ab:


[mm] $\frac{\widetilde{x}_1\widetilde{x}_2 - x_1x_2}{\left|x_1x_2\right|} [/mm] = [mm] \left|\epsilon_1 + \epsilon_2 + \epsilon_1\epsilon_2\right| {\color{red}\le} \left|\epsilon_1 + \epsilon_2\right|$ [/mm]


Zu der roten Abschätzung steht in meiner Mitschrift: "bei Vernachlässigung der Terme höherer Ordnung...". Wie ist das zu verstehen?


Danke für eure Mühe!


Grüße
Karl
[user]




        
Bezug
Grundrechenarten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 So 13.11.2005
Autor: mathemaduenn

Hallo Karl,
Die Terme höherer Ordnung( also Fehler zum Quadrat, hoch 3 usw.)  sind bei diesen Fehlern deutlich kleiner als die Terme erster Ordnung. Was daran liegt das die relativen Fehler bei Computerrechnung deutlich kleiner 1 sind.
z.B. 2 Dezimalstellen Genauigkeit
[mm]x_1=x_2=1.04999999999\approx 1[/mm]
[mm]\epsilon_1=0.05[/mm]
[mm]\epsilon_2=0.05[/mm]
[mm]\epsilon_1*\epsilon_2=0.0025[/mm]

Selbst wenn man mit den richtigen Eingangswerten rechnet und das Ergebnis dann rundet würde der Term höherer Ordnung wegfallen.
viele Grüße
mathemaduenn

Bezug
                
Bezug
Grundrechenarten: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 So 13.11.2005
Autor: Karl_Pech

Hallo mathemaduenn,


>  [mm]x_1=x_2=1.04999999999\approx 1[/mm]
>  [mm]\epsilon_1=0.05[/mm]
>  [mm]\epsilon_2=0.05[/mm]
>  [mm]\epsilon_1*\epsilon_2=0.0025[/mm]
>  
> Selbst wenn man mit den richtigen Eingangswerten rechnet
> und das Ergebnis dann rundet würde der Term höherer Ordnung
> wegfallen.


Vielen Dank! Jetzt ist es klar. Ich hatte vergessen, daß die Epsilons zwischen 0 und 1 liegen. ;-)



Viele Grüße
Karl
[user]





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de