www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppe
Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Sa 05.03.2005
Autor: Reaper

Hallo
Sei(A, [mm] \circ) [/mm] ein Monoid

[mm] (G_{A}) [/mm] (Gruppenkern) ist eine Gruppe

OK Bedingungen für Gruppe: Verknüpfungsgebilde(erfüllt wegen Monoid)
                                              assoziativ(erfüllt wegen Monoid)
                                              neutrales Element(erfüllt wegen Monoid)
                                              alles invertierbar(die Frage)
Meine Frage : Wie erkenne ich jetzt dass alle Elemente invertierbar sind?

        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Mo 07.03.2005
Autor: Julius

Hallo Reaper!

Der Kern eines Monoids ist gerade nach Definition gleich der Teilmenge aller invertierbaren Elemente des Monoids. Von daher sind alle Elemente des Kerns invertierbar.

Wo genau also liegt dein Problem?

Viele Grüße
Julius

Bezug
                
Bezug
Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 07.03.2005
Autor: Reaper

Hallo
Definition in meinem Skript:
[mm] G_{A} [/mm] := {a in A|a ist invertierbar} heißt der Gruppenkern von A. Falls jedes Element von A invertierbar ist, so heißt (A, [mm] \circ) [/mm] eine Gruppe.
Was mich jetzt irritiert ist dieses "falls" --> woher weiß ich das jedes Element
invertiernbar ist wenn ich nicht auf die Def. in unserem Skript verweisen kann?

Bezug
                        
Bezug
Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Di 08.03.2005
Autor: Hexe

Das liegt daran das du die Bezeichnungen durcheinander wirfst.
Also der Gruppenkern g(A) ist immer eine Gruppe, da ja nach der definiton nur die invertierbaren Elemente drin sind. Falls aber alle Elemente von A invertierbar sind, wenn also A=g(A) gilt, dann ist schon A eine Gruppe. Das ist der Sinn dieses Falls also die Unterscheidung zwischen g(A) (immer eine Gruppe) und dem Monoid A (kann eine Gruppe sein)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de