www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppe -> Vektorraum
Gruppe -> Vektorraum < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe -> Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 So 18.11.2007
Autor: Leni-H

Aufgabe
Sei G eine abelsche Gruppe. Zeige: G[p] := {g [mm] \in [/mm] G | ord (g) teilt p} ist ein Vektorraum über [mm] \IF_{p}. [/mm]

Hallo!

Ich habe Probleme bei obiger Aufgabe. Ich nehme mal an, dass p eine Primzahl ist, oder?
Wenn ich zeigen muss, dass es ein Vektorraum ist, muss ich ja die Vektorraumaxiome nachweisen. Dass G[p] eine abelsche Gruppe ist ist ja schon gegeben, da G[p] Untergruppe von G ist. Richtig?
Weiter komm ich aber schon nicht mehr. Sagen wir mal für a, b [mm] \in \IF_{p} [/mm] und g [mm] \in [/mm] G[p] muss gelten: a(bg) = (ab)g....
Irgendwie komm ich einfach nicht darauf, wie ich das zeigen soll. Irgendwie muss ich ja bestimmt verwenden, dass ord (g) p teilt, oder? Aber wie? Kann mir jemand mal einen Denkanstoß geben?

Grüße

Leni

        
Bezug
Gruppe -> Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 So 18.11.2007
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Sei G eine abelsche Gruppe. Zeige: G[p] := {g [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

G | ord

> (g) teilt p} ist ein Vektorraum über [mm]\IF_{p}.[/mm]

Hallo,

Deine Aufgabe läßt einige Fragen offen:

1. gehört zu einer Gruppe immer eine Verknüpfung - aber diese Problem ost minderschwer. Wir könnten sie  einfach [mm] \* [/mm] nennen.

2. Was ist p ?

Achso: Du weißt es auch nicht, lese ich gerade...

3. Was verbirgt sich hinter [mm] \IF_{p}? [/mm] Wie ist das bei Euch definiert?  (möglicherweise klärt sich hiermit 2.)

4. Wie ist denn die Vernüpfung [mm] \IF_{p} [/mm] x G --> G definiert? Da bräuchte man ja schon etwas...

Gruß v. Angela



Bezug
                
Bezug
Gruppe -> Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 So 18.11.2007
Autor: Leni-H

Hallo Angela!

Leider weiß ich auch nicht mehr als ich schon geschrieben habe. Die Aufgabe steht nur so auf dem Blatt, wie ich sie reingestellt habe. Allerdings nehme ich an, dass p eine primzahl sein soll, weil bei uns eigentlich p immer eine Primzahl sein soll. [mm] \IF_{p} [/mm] ist bei uns der Körper mit p Elementen. Hilft das was? Ich hab mal noch im Skript nachgeschaut. Da steht die Aussage auch drin, allerdings ohne Beweis, mit dem Hinweis, dass wir es selbt auf dem Übungsblatt beweisen. Allerdings steht im Skript noch dabei, dass G[p] "auf natürliche Weise" ein Vektorraum über [mm] \IF_{p} [/mm] ist (wobei "natürlich bedeutet: Jede Untergruppe ist auch ein Unterraum, jeder Gruppenhomomorphismus ist auch ein Vektorraumhomomorphismus). Bringt das was?

LG Leni

Bezug
        
Bezug
Gruppe -> Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 So 18.11.2007
Autor: andreas

hi



> Ich habe Probleme bei obiger Aufgabe. Ich nehme mal an,
> dass p eine Primzahl ist, oder?

ich denke davon kannst du ausgehen.


>  Wenn ich zeigen muss, dass es ein Vektorraum ist, muss ich
> ja die Vektorraumaxiome nachweisen. Dass G[p] eine abelsche
> Gruppe ist ist ja schon gegeben, da G[p] Untergruppe von G
> ist. Richtig?

wenn ihr nachgewiesen habt, dass $G[p]$ eine untergruppe von $G$ ist, dann ja, ansonsten musst du das eben noch nachweisen.

danach musst du eben eine skalarmultiplikation [mm] $\cdot [/mm] : [mm] \mathbb{F}_p \times [/mm] G[p] [mm] \longrightarrow [/mm] G[p]$ definieren, welche $G[p]$ zu einem [mm] $\mathbb{F}_p$-vektorraum [/mm] macht. überleg dir, dass diese schon vollständig festgeleget ist, wenn du für jedes $g [mm] \in [/mm] G[p]$ sagst, was $1 [mm] \cdot [/mm] g$ sein soll ($1 [mm] \in \mathbb{F}_p$), [/mm] da für $n [mm] \in \mathbb{F}_p$ [/mm] gilt $n = [mm] \underbrace{1 + 1 +... + 1}_{n-\mathrm{mal}}$. [/mm] ist $1 [mm] \cdot [/mm] g$ aber vielleicht schon durch die vektorraum axiome festgelegt? überlege dir also insgesamt, dass es nur eine möglichkeit gibt, die skalarmultiplikation festzulegen. danach musst du eben zeigen, dass dies wirklich alle eigenschaften, die benötigt werden erfüllt.


>  Irgendwie komm ich einfach nicht darauf, wie ich das
> zeigen soll. Irgendwie muss ich ja bestimmt verwenden, dass
> ord (g) p teilt, oder? Aber wie?

ja. das baruchtst du, um zu zeigen, dass die skalarmultiplikation wohldefiniert ist!


grüße
andreas

Bezug
                
Bezug
Gruppe -> Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 So 18.11.2007
Autor: Leni-H

Hallo Andreas!

Erstmal Danke für deine Antwort.

Wir haben Probleme beim Aufschreiben der Skalarmultiplikation. Wir haben es so versucht:

Sei 1*g = g und n*g = (g+g+...+g) (n-mal)

Dann gilt für a, b [mm] \in \IF_{p} [/mm] und g [mm] \in [/mm] G[p]:

a(bg) = a(g+g+...+g) (b-mal) = g+g+....+g (a*b-mal)
(ab)g = g+g+...+g (a*b-mal)

also gilt a(bg)=(ab)g

Jetzt ist uns aber nicht klar, wie wir zum Ausdruck bringen können, dass a*b ja kleiner als a oder b sein kann. In obiger Schreibweise kommt das ja nicht zum Ausdruck. Irgendwie muss ja noch verwendet werden, dass ord(g) p teilt... uns ist einfach nicht ganz klar, wie das in die beweisführung miteinfließt bzw. wie man das aufschreibt.

LG Leni & Michi

Bezug
                        
Bezug
Gruppe -> Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 18.11.2007
Autor: andreas

hi

> Wir haben Probleme beim Aufschreiben der
> Skalarmultiplikation. Wir haben es so versucht:
>  
> Sei 1*g = g und n*g = (g+g+...+g) (n-mal)

das ist auf jeden fall eine sinnvolle definition, da ja zwingeng gelten muss $1g = G$, sonst kann es sich ja um keinen vektorraum handeln.



> Dann gilt für a, b [mm]\in \IF_{p}[/mm] und g [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

G[p]:

>  
> a(bg) = a(g+g+...+g) (b-mal) = g+g+....+g (a*b-mal)
>  (ab)g = g+g+...+g (a*b-mal)
>  
> also gilt a(bg)=(ab)g
>  
> Jetzt ist uns aber nicht klar, wie wir zum Ausdruck bringen
> können, dass a*b ja kleiner als a oder b sein kann.

ich weiß nicht von welchem "kleiner" ihr hier sprecht. auf $\mathbb{F}_p$ gibt es ja keine anordnungsrelation! ihr seid an dieser stelle mit dem beweis schon fertig, da ja trivialerweise gilt $\underbrace{g + g + ... + g}_{(ab)-\mathrm{mal}} = \underbrace{g + g + ... + g}_{(ab)-\mathrm{mal}}$, wenn man als $a$ und $b$ einen repräsentanten der restklasse aus $\{0, ..., p-1\}$ wählt (ich nehme mal an, ihr habt $\mathbb{F}_p$ aus den ganzen zahlen konstruiert). und da beide ausdrücke gleich dem oben angegeben sind gilt $(ab)g = a(bg)$.


> Irgendwie muss ja noch verwendet werden, dass ord(g) p
> teilt... uns ist einfach nicht ganz klar, wie das in die
> beweisführung miteinfließt bzw. wie man das aufschreibt.

wie gesagt braucht man das für die wohldefiniertheit der sklaramultiplikation. es gilt ja $0 = 0g = pg = \underbrace{g + g + ... + g}_{p-\mathrm{mal}$. wäre das nicht $0$, hätte also $g$ keine ordnung, welche $p$ teilt, hätte man ein problem (macht euch klar, welche zeichen aus $G[p]$ und welche aus $\mathbb{F}_p$ sind).

grüße
andreas

Bezug
                                
Bezug
Gruppe -> Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 18.11.2007
Autor: Leni-H

Sorry, aber wir wissen einfach nicht, wie wir das aufschreiben sollen.... Wir können alle VR-Axiome nachweisen... die sind ja auch nicht schwer, aber wir bringen ja nirgends die Bedingungen, die die Aufgabe uns gibt, ein.
Somit könnt G[p] ja auch ein VR über dem Körper mit z.B. (p+1)-Elementen sein. Wo muss man denn einbringen, dass 0=0g=pg=g+g+...+g ist?

Bezug
                                        
Bezug
Gruppe -> Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 So 18.11.2007
Autor: andreas

hi

das problem ist, dass [mm] $\mathbb{F}_p$ [/mm] charakteristik $p$ hat, dass heißt [mm] $\underbrace{1 + ... + 1}_{p-\textrm{mal}} [/mm] = 0$. das muss sich auch bei der skalarmultiplijkation wiederspiegelen. das heißt es muss gelten [mm] $(\underbrace{1 + ... + 1}_{p-\textrm{mal}})g [/mm] = 0g$ und das gilt eben nur, wenn [mm] $\underbrace{g + ... + g}_{p-\textrm{mal}} [/mm] = 0$ für alle $g [mm] \in [/mm] G[p]$. wie habt ihr denn [mm] $\mathbb{F}_p$ [/mm] definiert? wenn ihr es als [mm] $\mathbb{Z}/p\mathbb{Z}$ [/mm] definiert habt gilt doch $[0] = [p]$, wenn $[n]$ für die entsprechende restklasse steht. dann muss aber auch $[0]g = [p]g$ gelten. und das ist genau die obige bedingung.

wenn euch das nicht weiterhilft, müsst ihr mal etwas mehr informationen geben - insbesondere, wie ihr den körper mit $p$ elementen definiert habt.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de