www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppe abelsch,Quadrate
Gruppe abelsch,Quadrate < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe abelsch,Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:16 Sa 06.10.2012
Autor: sissile

Aufgabe
Es sei G eine Gruppe. Beweise:
G ist genau dann abelsch, wenn [mm] (ab)^2 [/mm] = [mm] a^2 b^2 [/mm] für alle a,b [mm] \in [/mm] G

Hallo!"

=>
G ist abelsch
[mm] (ab)^2 [/mm] = [mm] (ab)(ab)=(ba)(ab)=b(aa)b=bb(aa)=b^2a^2 [/mm]


<=
[mm] (ab)^2=(ab)(ab) [/mm] = [mm] a^2 b^2 [/mm]
ZUzeigen: [mm] \forall [/mm] x , y [mm] \in [/mm] G : xy=yx


Stimmt die Richtung => ?
Wie kann ich bei der Richtung <= am besten vorgehen?

Danke,lg

        
Bezug
Gruppe abelsch,Quadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 01:56 Sa 06.10.2012
Autor: Marcel

Hallo,

> Es sei G eine Gruppe. Beweise:
>  G ist genau dann abelsch, wenn [mm](ab)^2[/mm] = [mm]a^2 b^2[/mm] für alle
> a,b [mm]\in[/mm] G
>  Hallo!"
>  
> =>
>  G ist abelsch
> [mm](ab)^2[/mm] = [mm](ab)(ab)=(ba)(ab)=b(aa)b=bb(aa)=b^2a^2[/mm]
>  
>
> <=
>  [mm](ab)^2=(ab)(ab)[/mm] = [mm]a^2 b^2[/mm]
>  ZUzeigen: [mm]\forall[/mm] x , y [mm]\in[/mm] G :
> xy=yx
>  
>
> Stimmt die Richtung => ?

ja. Überleg' Dir doch einfach für jedes [mm] $=\,$ [/mm] die entsprechende
Begründung: Das erste gilt per Def., das zweite wegen der
Kommutativität, das dritte und vierte wegen Assoziativität...

>  Wie kann ich bei der Richtung <= am besten vorgehen?
>  
> Danke,lg

Es gelte
[mm] $$x^2y^2=(xy)^2$$ [/mm]
für alle $x,y [mm] \in G\,.$ [/mm] Dannn folgt
[mm] $$(x^2y^2)*(xy)^{-1}=(xy)^2*(xy)^{-1}\,,$$ [/mm]
also
[mm] $$(x^2y^2)*(xy)^{-1}=xy\,.$$ [/mm]

Linkerhand wende nun (das bekanntlich in jeder Gruppe geltende)
Gesetz [mm] $(xy)^{-1}=y^{-1}x^{-1}$ [/mm] an, es folgt:
[mm] $$x^2 [/mm] y [mm] x^{-1}=xy\,.$$ [/mm]

Multipliziere nun auf beiden Seiten der Gleichung von links [mm] $x^{-1}$ [/mm] und
von rechts [mm] $x\,$ [/mm] ran, und Du solltest fertig sein!

Gruß,
  Marcel

Bezug
                
Bezug
Gruppe abelsch,Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Sa 06.10.2012
Autor: sissile

Hallo,
Vielen Dank.

Ich wollte noch wegen Punkt b) fragen:

Es sei G eine Gruppe.Beweisen sie folgende Aussage:
G ist genau dann abelsch, wenn [mm] (ab)^{-1} =a^{-1} b^{-1} [/mm] für alle a,b [mm] \in [/mm] G

=> [mm] (ab)^{-1} [/mm] = [mm] b^{-1} a^{-1} =a^{-1} b^{-1} [/mm]

<=
Es gelte

     [mm] (ab)^{-1}=a^{-1} b^{-1} [/mm]


für alle a,b [mm] \in G\,. [/mm]

Mein Ansatz:
[mm] (a^{-1}b^{-1}) (ab)^2 [/mm] = [mm] (ab)^{-1} (ab)^2 =b^{-1} a^{-1} [/mm] (ab)(ab)=ab

Es gilt: [mm] (a^{-1}b^{-1}) (ab)^2 [/mm] = [mm] (ba)^{-1} (ab)^2 [/mm]
Kannst du mir da vlt. nochmals helfen?
Lg ;)



Bezug
                        
Bezug
Gruppe abelsch,Quadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Sa 06.10.2012
Autor: Marcel

Hallo,

> Hallo,
>  Vielen Dank.
>  
> Ich wollte noch wegen Punkt b) fragen:
>  
> Es sei G eine Gruppe.Beweisen sie folgende Aussage:
>  G ist genau dann abelsch, wenn [mm](ab)^{-1} =a^{-1} b^{-1}[/mm]
> für alle a,b [mm]\in[/mm] G
>  
> => [mm](ab)^{-1}[/mm] = [mm]b^{-1} a^{-1} =a^{-1} b^{-1}[/mm]

die Richtung [mm] "$\Rightarrow$" [/mm] ist korrekt! [ok]

> <=
>  Es gelte
>  
> [mm](ab)^{-1}=a^{-1} b^{-1}[/mm]
>  
>
> für alle a,b [mm]\in G\,.[/mm]
>
> Mein Ansatz:
>  [mm](a^{-1}b^{-1}) (ab)^2[/mm] = [mm](ab)^{-1} (ab)^2 =b^{-1} a^{-1}[/mm]
> (ab)(ab)=ab
>  
> Es gilt: [mm](a^{-1}b^{-1}) (ab)^2[/mm] = [mm](ba)^{-1} (ab)^2[/mm]
>  Kannst
> du mir da vlt. nochmals helfen?

ja, aber denk' dran, dass die Verwendung von [mm] $\Rightarrow$-Zeichen [/mm]
sinnvoll ist. ;-)

Dir geht's also noch darum, zu zeigen, dass aus
[mm] $(ab)^{-1}=a^{-1}b^{-1}$ [/mm] (für alle $a,b [mm] \in [/mm] G$) schon [mm] $a*b=b*a\,$ [/mm]
(für alle $a,b [mm] \in [/mm] G$) folgt.

Es gilt
[mm] $$ab=((ab)^{-1})^{-1}\,.$$ [/mm]

Damit kommst Du zum Ziel (etwa, indem Du in der inneren Klammer
erstmal die Regel [mm] $(ab)^{-1}=a^{-1}b^{-1}$ [/mm] anwendest, die nach
Voraussetzung gilt, und danach dann aber die "allgemeingültige" Regel
[mm] $(xy)^{-1}=y^{-1}x^{-1}\,.$ [/mm] (Die Reihenfolge der Regelanwendungen
könnte man auch vertauschen und käme genau so zum Ziel). Danach
beachte (erneut) [mm] $x=(x^{-1})^{-1}\,$ [/mm] - die Regel, mit der wir starteten!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de