www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppe mit drei Elementen
Gruppe mit drei Elementen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe mit drei Elementen: Frage
Status: (Frage) beantwortet Status 
Datum: 22:15 Fr 05.11.2004
Autor: supernuss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Abend! Also ich hab zwar eine ähnliche Frage im Archiv gefunden, allerdings die Antwort nicht wirklich verstanden, deshalb:
Zeige anhand der Gruppentafel, daß die Gruppe G({e, a, b}, °) kommutativ
sein muß. Das heißt, jede Gruppe die nur 3 Elemente enthält, ist
kommutativ.
Danke im Voraus!
MfG Simon

        
Bezug
Gruppe mit drei Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Sa 06.11.2004
Autor: Hanno

Hallo Supernuss!

[willkommenmr]

> Abend! Also ich hab zwar eine ähnliche Frage im Archiv gefunden, allerdings die Antwort nicht wirklich verstanden, deshalb:

Danke für den Hinweis und die Tatsache, dass du gesucht hast!

> Zeige anhand der Gruppentafel, daß die Gruppe G({e, a, b}, °) kommutativ sein muß. Das heißt, jede Gruppe die nur 3 Elemente enthält, ist kommutativ.

Schauen wir uns die Definition einer Gruppe an:
Eine Algebra [mm] $\langle S,\circ\rangle$ [/mm] mit einem zweistelligen Operator [mm] $\circ$ [/mm] heißt Gruppe, wenn
1.) [mm] $\circ$ [/mm] assoziativ ist,
2.) es ein neutrales Element [mm] $e\in [/mm] S$ gibt und
3.) jedes Element ein [mm] $a\in [/mm] S$ ein inverses Element besitzt.

So, interessant gleich zu Beginn ist für uns die Bedingung (2). Wir müssen also ein Element aus [mm] $\{e,a,b\}$ [/mm] auswählen, welches wir o.B.d.A. zum links- und rechtsneutrales (kurz neutrales) Element erklären. Dies sei nun das Element $e$. Dann ergibt sich für die Verknüpfungstafel schonmal folgendes:

[mm] $\begin{tabular}{c|c|c|c}\circ & e & a & b \\ \hline e & e & a & b \\ \hline a & a & & \\ \hline b & b & &\end{tabular}$ [/mm]

Wie du siehst, sind die bisherigen Verknüpfungen kommutativ und die Aussagen bleiben gültig, wenn du a und b vertauschst. Arbeitest du nun mit einer der beiden Variablen a oder b und zeigst beliebige Aussagen, die auf dem Bisherigen aufbauen, so kannst du sicher sein, dass Gleiches auch für die andere Variable gilt, da das Verwendete auch für vertauschte a und b gilt. Wenn du also etwas gezeigt hast, gilt es auch für die andere Variable, da du a und b einfach vertauschen kannst. Somit ist die dann entstandene Gruppe mit den bisher definierten Verknüpfungen wieder kommutativ.

Wenn du es durch formales Arbeiten zeigen möchtest, musst du zeigen, dass [mm] $a\circ b=b\circ [/mm] a$ gilt.

Ich hoffe ich konnte dir helfen.

Liebe Grüße,
Hanno

Bezug
                
Bezug
Gruppe mit drei Elementen: Frage
Status: (Frage) beantwortet Status 
Datum: 13:09 Sa 06.11.2004
Autor: supernuss

Tach!
Ja, du konntest mir helfen, die richtige Lösung muss wohl so lauten, oder?

   e a b
e e a b
a a b e
b b e a

wenn in der Fragestellung nur steht, dass man dies an einer Gruppentafel zeigen soll, müsste das doch so reichen, oder?
Danke nochmals! MfG Simon

Bezug
                        
Bezug
Gruppe mit drei Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 So 07.11.2004
Autor: Stefan

Hallo Supernuss!


>  Ja, du konntest mir helfen, die richtige Lösung muss wohl
> so lauten, oder?
>  
> e a b
>  e e a b
>  a a b e
>  b b e a

[ok]

> wenn in der Fragestellung nur steht, dass man dies an einer
> Gruppentafel zeigen soll, müsste das doch so reichen,
> oder?

Ja. Du musst halt begründen, dass jedes Gruppenelement in jeder Zeile und Spalte genau einmal vorkommen muss. Da durch das neutrale Element schon fünf Felder vorgegeben sind (siehe Hanno), müssen die restlichen vier Felder mit obiger Restriktion genau so aufgefüllt werden wie von dir hier beschrieben. Da die entstehende Gruppentafel symmetrisch zur Hauptdiagonalen ist, ist die Gruppe kommutativ.

Liebe Grüße
Stefan


Bezug
        
Bezug
Gruppe mit drei Elementen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 06.11.2004
Autor: Arthur

das ist nicht schwer,
überleg doch mal dass es ein neutrales element geben muss und es bei der verknüpfung für jedes element ein inverses element gibt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de