www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppen
Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 18.11.2005
Autor: Kati

Ich habe diese Frage noch in keinem anderen Internetforum gestellt.

Hi!

Ich hab mich hier mal ein einer Aufgabe versucht und würde mal gerne einen Kommentar dazu hören und evtl. Verbesserungsvorschläge. Ich hab das Thema net richtig kapiert, habs aber trotzdem versucht, deswegen kann ich mir vorstellen, das das auch völliger Quatsch sein kann ;)

Also die Aufgabe lautet Folgendermaßen:
Es sei M eine Menge und G [mm] \le [/mm] S (M) eine Untergruppe. Für x [mm] \in [/mm] M definieren wir die Standgruppe [mm] G_{x} [/mm] und die Bahn G(x) durch
[mm] G_{x} [/mm] = { g [mm] \in [/mm] G : g(x) = x } und G(x) = {g(x) : g [mm] \in [/mm] G }
Zeigen Sie, dass [mm] G_{x} [/mm] für alle x [mm] \in [/mm] M eine Untergruppe von G ist.

Also ich denke ich zeigen muss dass:
1) [mm] G_{x} \not= \emptyset [/mm]
2) [mm] G_{x} \circ G_{x} \subseteq G_{x} [/mm]   ( hier bin ich mir gar nicht so sicher ob das überhaupt so richtig ist )
3) [mm] G_{x} [/mm] ^{-1} [mm] \subseteq G_{x} [/mm]

zu 1) id [mm] \in G_{x} [/mm] , da id (x) = x also [mm] G_{x} \not= \emptyset [/mm]
zu 2) sei g  [mm] \in G_{x} [/mm] , dann g [mm] \in [/mm] G und g (x) = x
         da g [mm] \circ [/mm] g = g gilt auch [mm] G_{x} \circ G_{x} \subseteq G_{x} [/mm]
zu 3) sei g [mm] \in G_{x} [/mm]
        [mm] g^{-1} [/mm] existiert nur wenn g bijektiv ist
         da gilt g (x) = x gilt auch [mm] g^{-1} [/mm] (x) = x (wegen Bijektivität)
         also gilt [mm] G_{x} [/mm] ^{-1} [mm] \subseteq G_{x} [/mm]

Wie gesagt...ich bin mir mit dieser Lösung sehr sehr sehr unsicher....


Dann könnt ich auch noch nen Tipp zur Folgeaufgabe gebrauchen, die hier gleich anschließt.
Ich soll zeigen dass M / G := { G(x) : x [mm] \in [/mm] M } eine Partition von M ist und die zugehörige Äquivalenzrelation beschreiben.

Von einer Partition von M weiß ich, dass sie ein Mengensystem
S [mm] \subseteq \mathcal{P} [/mm] (M) \ {0} mit [mm] \forall [/mm] X, Y [mm] \in [/mm] S
X  [mm] \not= [/mm] Y  [mm] \Rightarrow [/mm] X [mm] \cap [/mm] Y = [mm] \emptyset [/mm]
[mm] \bigcup_{i=1}^{n} [/mm] S = M
Hier weiß ich irgendwie garnet wie ich rangehen soll also wär eine kleine Hilfe ganz nett ;)

Gruß Katrin

        
Bezug
Gruppen: Korrektur + Tipp
Status: (Antwort) fertig Status 
Datum: 18:46 Fr 18.11.2005
Autor: Clemens

Hallo Katrin!

Zur ersten Aufgabe:
Du hast richtig formuliert, was du zeigen musst und 1. sowie 3. richtig gezeigt. Nur bei 2. musst du zwei Dinge beachten:

a) Für ein Element g aus [mm] G_{x} [/mm] gilt im Allgemeinen leider [mm]g°g \not= g[/mm].

b) Willst du zeigen, dass [mm]G_{x}°G_{x} \subseteq G_{x}[/mm] gilt, so beachte, dass in [mm]G_{x}°G_{x}[/mm] i. A. nicht nur Elemente der Form g°g mit g aus [mm] G_{x}, [/mm] sondern auch Elemente der Form [mm] g_{1}°g_{2} [/mm] mit [mm] g_{1},g_{2} [/mm] aus [mm] G_{x} [/mm] liegen.


Zur zweiten Aufgabe:
Du musst zeigen, dass gilt:

1. Jedes Element m aus M liegt in einem Element G(x) von M/G mit x aus M. Du musst ein solches x aus M finden. Anmerkung: Du kennst nur das Element m aus M.

2. Schneiden sich zwei Bahnen G(x) und G(y) mit x, y aus M in einem Element m aus M, so sind die Bahnen schon gleich.

Tipp: Wenn m in G(x) liegt, was heißt das? Wenn m in G(y) liegt, was heißt das? Stehen x und y dann in irgendeinem Verhältnis?

Gruß Clemens

Bezug
                
Bezug
Gruppen: M nur Menge?
Status: (Frage) beantwortet Status 
Datum: 19:01 Fr 18.11.2005
Autor: bazzzty


> Zur ersten Aufgabe:
> Du hast richtig formuliert, was du zeigen musst und 1.
> sowie 3. richtig gezeigt.

>> zu 3) sei g [mm]\in G_{x}[/mm]
>> [mm]g^{-1}[/mm] existiert nur wenn g bijektiv ist
>> da gilt g (x) = x gilt auch [mm]g^{-1}[/mm] (x) = x (wegen
>> Bijektivität)
>>           also gilt [mm]G_{x}[/mm] ^{-1} [mm]\subseteq G_{x}[/mm]

Das habe ich ehrlich gesagt nicht verstanden. Wenn M eine Gruppe wäre, wäre das klar, aber wenn M nur eine Menge mit Verknüpfung ist, woher kommt so ein inverses Element?

Das Problem hat Katrin ja angedeutet:
>> [mm]g^{-1}[/mm] existiert nur wenn g bijektiv ist

Was, wenn in M ein Element vorkommt, was nicht als Permutation auf der Menge operiert (=bijektiv operiert). In Gruppen ist das selbstverständlich, aber ist M ist nach Voraussetzung nur eine Menge?


Bezug
                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Sa 19.11.2005
Autor: Leopold_Gast

[mm]g^{-1}[/mm] existiert nur wenn g bijektiv ist

Ich glaube, du siehst hier ein Problem, wo keines ist. Beachte: [mm]G \subseteq S(M)[/mm] und nicht [mm]G \subseteq M[/mm]!

[mm]S(M)[/mm] ist aber gerade die Gruppe der bijektiven Abbildungen [mm]M \to M[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de