www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppen
Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Untergruppen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:40 Mi 30.10.2013
Autor: Kirschli

Aufgabe
Man bestimme alle Untergruppen von [mm] \IZ [/mm] n.

In unserem Skript sind Untergruppen folgend definiert:
Eine Untergruppe U einer Gruppe [mm] (G,\circ) [/mm] ist eine nichtleere
Teilmenge U [mm] \subset [/mm] G, wobei [mm] (U,\circ) [/mm] ebenfalls eine Gruppe bildet.

Unser Dozent hat uns den Tip gegeben, dass [mm] \IZn, [/mm] dasselbe ist wie [mm] \IZ [/mm] / [mm] n\IZ. [/mm]

Leider bringt mich das nicht weiter :-/


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppen: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 30.10.2013
Autor: wieschoo

Findest denn überhaupt EINE Untergruppe? Oder hapert es am Begriff Untergruppe?



Bezug
                
Bezug
Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mi 30.10.2013
Autor: Kirschli

Ich weiß, dass eine Untergruppe eine Teilmenge einer Gruppe ist und somit auch dieselben Eigenschaften besitzt. Eine Untergruppe kann assoziativ sein, d.h. aber nicht, unbedingt dass sie auch neutrales oder inverses Element besitzen oder abgeschlossen sein.
Ich habe keine Idee, wie ich alle Untergruppen zeigen soll...



Bezug
                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mi 30.10.2013
Autor: hippias

Nichts fuer ungut, aber das ergibt doch fast keinen Sinn: Du hast doch selbst die Definition einer Untergruppe genannt, und daraus ergibt sich doch sofort, dass die Verkuepfung assoziativ ist; ebenso ist die Menge abgeschlossen bezueglich der Verknuepfung, sonst liegt doch keine Gruppe vor.
Die Definition solltest Du noch einmal ganz genau durchdenken.

Bezug
                                
Bezug
Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Mi 30.10.2013
Autor: Kirschli

hast Recht, da habe ich mich selbst durcheinander gebracht.

Also laut Definition besitzt eine Untergruppe [mm] (U,\circ) [/mm] die selben Eigenschaften, wie die Gruppe und bildet damit selbst eine Gruppe.

Aber, wie bestimme ich "alle Untergruppen von [mm] \IZ_{n}"? [/mm]

Bezug
                                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Do 31.10.2013
Autor: hippias

Alle Untegruppen zu bestimmen, kann ein schwieriges Unterfangen sein, aber fuer [mm] $\IZ_{n}$ [/mm] geht es. Habt ihr ueber zyklische Gruppen gesprochen? Weisst Du, dass [mm] $(Z_{n},+)$ [/mm] zyklisch ist? Weisst Du etwas ueber die Untergruppen zyklischer Gruppen? Weisst Du, was die Ordnung eines Gruppenelementes ist?

Bezug
                                                
Bezug
Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 31.10.2013
Autor: Kirschli


> Alle Untegruppen zu bestimmen, kann ein schwieriges
> Unterfangen sein, aber fuer [mm]\IZ_{n}[/mm] geht es. Habt ihr ueber
> zyklische Gruppen gesprochen? Weisst Du, dass [mm](Z_{n},+)[/mm]
> zyklisch ist? Weisst Du etwas ueber die Untergruppen
> zyklischer Gruppen? Weisst Du, was die Ordnung eines
> Gruppenelementes ist?


In der Vorlesung hatten wir den Satz, dass "Jede zyklische Gruppe ist isomorph zu  [mm] \IZ [/mm] oder [mm] \IZ_{n} [/mm] mit n [mm] \in \IN." [/mm]

ich denke, dass [mm] (\IZ_{n},+) [/mm] eine zyklische Gruppe ist

könnte ich sagen: [mm] \IZ [/mm] / [mm] \IZ_{n} \times \IZ [/mm] / [mm] \IZ_{n} \Rightarrow [/mm] isomorph

Bezug
                                                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Do 31.10.2013
Autor: hippias


> > Alle Untegruppen zu bestimmen, kann ein schwieriges
> > Unterfangen sein, aber fuer [mm]\IZ_{n}[/mm] geht es. Habt ihr ueber
> > zyklische Gruppen gesprochen? Weisst Du, dass [mm](Z_{n},+)[/mm]
> > zyklisch ist? Weisst Du etwas ueber die Untergruppen
> > zyklischer Gruppen? Weisst Du, was die Ordnung eines
> > Gruppenelementes ist?
>
>
> In der Vorlesung hatten wir den Satz, dass "Jede zyklische
> Gruppe ist isomorph zu  [mm]\IZ[/mm] oder [mm]\IZ_{n}[/mm] mit n [mm]\in \IN."[/mm]
>  
> ich denke, dass [mm](\IZ_{n},+)[/mm] eine zyklische Gruppe ist

Richtig. Welches Element erzeugt sie? Damit wird sich etwas anfangen lassen. Ich kann mir aber nicht vorstellen, dass Du von den anderen Themen, nach denen ich Dich gefragt habe, nichts gehoert hast.

>  
> könnte ich sagen: [mm]\IZ[/mm] / [mm]\IZ_{n} \times \IZ[/mm] / [mm]\IZ_{n} \Rightarrow[/mm]
> isomorph

Klar, ist aber so aussagekraeftig wie der Halbsatz "Zwei Aepfel [mm] $\Rightarrow$ [/mm] so schwer wie"

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de