www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppen Algebra
Gruppen Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:07 Mo 18.06.2007
Autor: Aileron

Aufgabe
Sei [mm]R = \IR[X][/mm]

Zeigen Sie es gibt keinen Isomorphismus zwischen M und N, es existiert keine bijektive linere Abbildung [mm]\phi: M \to N[/mm], so dass [mm]\phi(P(X).v) = P(X) * \phi(v) \quad \forall P(X) \in \IR[X][/mm] und [mm]\forall v \in M[/mm]

Hinweis zur Aufgabenstellung.

In vorrangegangenen Aufgaben waren M und N Vektorräume über [mm]\IR^{2}[/mm]
Es ist anzunehmen das M und N in dieser Aufgabe wieder allgemeine Vektorräume sind.

Nun zu meiner Frage

Ich habe auch nach stundenlagem überlegen keine Lösungsansatz gefunden. um zu zeigen das diese Abbildung keinen Isomorphissmus datstellt muss ich zeigen des es entweder keine Surjektive oder keine Injektive abbildung gibt.
Ich konnte allerdings nichtmal nachweisen das diese Abbildung überhaupt linear ist.
Nur beweist meine Unfähigkeit leider noch nicht, dass die Aussage stimmt :)
Es würde mich sehr freuen, wenn mit jemand anhand dieser aufgabenstellung zeigt wie man im allgemeinen nachweist das eine Abbildung nicht isomorph ist.

Ein anderer Lösungsansatz war zu zeigen, das die abbildung von [mm]\phi[/mm] micht invertierbar ist, was auch wieder einen wiederspruch zu einem Isomorphismus dastellt.

P(X) ist aus dem Ring der Polynome. Die Ringeigenschaften sagen mir das es im allgemien kein Multiplikatives Inverses gibt, und ein Polynom ist im allgemienen auch nicht invertierbar. Dann werde ich auch keine inverse abbildung finden in der ich das Polynom als Skalar aus der Abbildung [mm]\phi^{-1}[/mm] herrausziehen kann.
Ist dieser ansatz richtig?
Aber wie Argumentiere ich das mathematich?
Gibt es einen eleganteren Ansatz?

mit freundlichen Grüßen
Siegurt Skoda

ps.: ich habe diese frage nicht in einem anderen Forum gestellt und habe dies auch nicht vor. ausserdem habe ich auf meiner internetrechersche keinen hinweis auf meine Fragestellung gefunden, und würde mich sehr freuen, wenn mir jemand die Aufgabe erklären könnte XD

pss.: (für den Server) Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppen Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Mo 18.06.2007
Autor: Karsten0611

Hallo Aileron

> Sei [mm]R = \IR[X][/mm]
>  
> Zeigen Sie es gibt keinen Isomorphismus zwischen M und N,
> es existiert keine bijektive linere Abbildung [mm]\phi: M \to N[/mm],
> so dass [mm]\phi(P(X).v) = P(X) * \phi(v) \quad \forall P(X) \in \IR[X][/mm]
> und [mm]\forall v \in M[/mm]
>  Hinweis zur Aufgabenstellung.
>  
> In vorrangegangenen Aufgaben waren M und N Vektorräume über
> [mm]\IR^{2}[/mm]
>  Es ist anzunehmen das M und N in dieser Aufgabe wieder
> allgemeine Vektorräume sind.
>  

>  Gibt es einen eleganteren Ansatz?

Also das, was mir auf Anhieb einfallen würde, wäre ein Widerspruchsbeweis. Also annehmen, daß es einen solchen Isomorphismus gibt, und dann für ein spezielles Polynom (und evtl. ein spezielles [mm]v \in M[/mm]) den Widerspruch herbeiführen.

LG
Karsten


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de