www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppen beweis mit Assoziatät
Gruppen beweis mit Assoziatät < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen beweis mit Assoziatät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Fr 26.10.2007
Autor: Narokath

Aufgabe
Sei G eine Menge mit assoziativer Verknüpfung * : G x G [mm] \to [/mm] G und der Eigenschaft

[mm] \forall [/mm] a,b [mm] \in [/mm] G : (( [mm] \exists [/mm] !x [mm] \in [/mm] G : a * x = b) [mm] \wedge [/mm] ( [mm] \exists [/mm] !y [mm] \in [/mm] G : y * a = b)).

Zeigen Sie, dass dann (G, * ) eine Gruppe ist.

Hallo,

Also grundlegend hab ich den Sachverhalt verstanden denke ich, was eine Gruppe ist weiss ich auch.
Die assoziativität ist ja bereits gegeben aus der Aufgabe, also gilt es das Neutrale und analog das Inverse Element zu finden, nur weiss ich überhaupt nicht wie ich das Anstellen kann. Ich hab bereits versucht in die Assoziativitätsformel die Eigenschaft einzusetzen also

(a * b) * c = a * (b * c)

--> (a * a * x ) * c = a  * (y * a * c)

daraus könnte man schliessen das a = y und x = a ist
und dann wäre a * a * a * c = a * a * a * c
was mir aber eigentlich über haupt nichts bringt
schon gar nicht zum neutralen Element.

wäre echt nett wenn mir jemanden einen tipp dafür geben könnte, lösen würde ich es ja auch gerne selbst :-)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppen beweis mit Assoziatät: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Fr 26.10.2007
Autor: angela.h.b.


> Sei G eine Menge mit assoziativer Verknüpfung * : G x G [mm]\to[/mm]
> G und der Eigenschaft
>  
> [mm]\forall[/mm] a,b [mm]\in[/mm] G : (( [mm]\exists[/mm] !x [mm]\in[/mm] G : a * x = b) [mm]\wedge[/mm]
> ( [mm]\exists[/mm] !y [mm]\in[/mm] G : y * a = b)).
>  
> Zeigen Sie, dass dann (G, * ) eine Gruppe ist.

Hallo,

zum Problem mit dem neutralen Element:

Sei a ein beliebiges Element aus G, also [mm] a\in [/mm] G.

Nun schau Dir an, wie G charkterisiert ist: für alle a,b [mm] \in [/mm] G gilt: man findet ein [mm] x\in [/mm] G mit a*x=b und man findet ein [mm] y\in [/mm] G mit y*b=a.

Wenn das für alle a,b [mm] \in [/mm] G gilt, gilt das auch für a,a [mm] \in [/mm] G. Was bedeutet das?

Gruß v. Angela

Bezug
                
Bezug
Gruppen beweis mit Assoziatät: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Sa 27.10.2007
Autor: Narokath

ah natürlich vielen dank!

Das heisst das das neutrales Element: [mm] \exists [/mm] e [mm] \forall [/mm] a in [mm] \M [/mm] ; a * e = a = e * a

also zur aufgabe [mm] \forall [/mm] a,a [mm] \in [/mm] G : (( [mm] \exists [/mm] ! x [mm] \in [/mm] G : a * x = a)  [mm] \wedge (\exists [/mm] ! y [mm] \in [/mm] G : y * a =a))
also gilt a * x = y * a = a
x und y sind das neutrale Element

und zum inversen:
zur Def: [mm] \forall [/mm] a [mm] \in [/mm] G [mm] \exists [/mm] i [mm] \in [/mm] M : a * i = e = i * a

also zur aufgabe:
[mm] \forall [/mm] a,e [mm] \in [/mm] G : (( [mm] \exists [/mm] ! x [mm] \in [/mm] G : a * x = e)  [mm] \wedge (\exists [/mm] ! y [mm] \in [/mm] G : y * a =e))
nur bin ich mir nicht ganz sicher da das ganze ja nicht kommutativ ist ob ich schreiben kann da e ja x und y ist:
a * x1 = x
y1*a = y

wenn das gilt wäre die aufgabe ja eigentlich gelöst


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de