www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppen der Ordnung pq
Gruppen der Ordnung pq < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen der Ordnung pq: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 10.03.2009
Autor: Jenny85

Hallo!
Ich bin gerade dabei zu zeigen, wieviele Gruppen der Ordnung pq es bis auf Isomorphie gibt für den Fall p>q und q| p-1.
Ich weiß das es genau zwei Gruppen sind nämlich die zyklische und die Gruppe die gegeben ist durch
[mm] $x^{p}=e, \quad y^{q}=e \quad yxy^{-1}=x^{i} \quad \mbox{mit} \quad i^{q} \equiv [/mm] 1 [mm] \pmod{p}$. [/mm]
Für den Fall das es eine q-sylowgruppe in g ist habe ich die zyklische Gruppe raus. Jetzt bin ich bei dem Fall, dass es p q-Sylowgruppen in G gibt. Ich habe auch schon gezeigt, dass gilt [mm] $yxy^{-1}=x^{i}$ [/mm] mit [mm] $i^{q} \equiv [/mm] 1 [mm] \pmod{p}$. [/mm] Jetzt weiß ich nur nicht wie ich zeigen soll, dass es nicht mehr als eine Gruppe dieser Art bis auf Isomorphie gibt. Habe mir dazu eine zweite Gruppe der Form gewählt:

$$ x'^{p}=e [mm] \quad [/mm] y'^{q}=e [mm] \quad y'x'y'^{-1}=x'^{i^{j}} \quad \mbox{mit} \quad i^{q} \equiv [/mm] 1 [mm] \pmod{p} \; \mbox{und} \; j\equiv 1\pmod{p}.$$ [/mm] Kann ich jetzt einfach sagen, dass es einen Isomorphismus gibt, der x' auf x abbildet und y auf [mm] $y^{j}$ [/mm] ?
Wäre schön, wenn mir da jemand weiter helfen könnte!
Viele Grüße
Jenny

        
Bezug
Gruppen der Ordnung pq: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Do 12.03.2009
Autor: felixf

Hallo

>  Ich bin gerade dabei zu zeigen, wieviele Gruppen der
> Ordnung pq es bis auf Isomorphie gibt für den Fall p>q und
> q| p-1.
> Ich weiß das es genau zwei Gruppen sind nämlich die
> zyklische und die Gruppe die gegeben ist durch
> [mm]x^{p}=e, \quad y^{q}=e \quad yxy^{-1}=x^{i} \quad \mbox{mit} \quad i^{q} \equiv 1 \pmod{p}[/mm].
> Für den Fall das es eine q-sylowgruppe in g ist habe ich
> die zyklische Gruppe raus. Jetzt bin ich bei dem Fall, dass
> es p q-Sylowgruppen in G gibt. Ich habe auch schon gezeigt,
> dass gilt [mm]yxy^{-1}=x^{i}[/mm] mit [mm]i^{q} \equiv 1 \pmod{p}[/mm]. Jetzt
> weiß ich nur nicht wie ich zeigen soll, dass es nicht mehr
> als eine Gruppe dieser Art bis auf Isomorphie gibt. Habe
> mir dazu eine zweite Gruppe der Form gewählt:
>
> [mm]x'^{p}=e \quad y'^{q}=e \quad y'x'y'^{-1}=x'^{i^{j}} \quad \mbox{mit} \quad i^{q} \equiv 1 \pmod{p} \; \mbox{und} \; j\equiv 1\pmod{p}.[/mm]
> Kann ich jetzt einfach sagen, dass es einen Isomorphismus
> gibt, der x' auf x abbildet und y auf [mm]$y^{j}$[/mm] ?

Nun, du musst das schon beweisen.

Dazu:

1) Zeige, dass sich jedes Element aus $G$ als [mm] $x^a y^b$ [/mm] darstellen laesst mit $0 [mm] \le [/mm] a < p$, $0 [mm] \le [/mm] b < q$.

2) Stelle [mm] $x^a y^b x^c y^d$ [/mm] in dieser Form da (benutze dafuer $y x = [mm] x^i [/mm] y$).

3) Wenn [mm] $\varphi$ [/mm] jetzt [mm] $x^a y^b$ [/mm] auf [mm] $(x')^a ((y')^j)^b$ [/mm] abbildet, wird das ganze dann ein Homomorphismus?

Falls nicht, solltest du dadurch eine Idee bekommen wie du das Bild von $y$ waehlen musst.

(Ein Tipp: da die Ordnung von $y$ prim ist, ist auch [mm] $y^i$ [/mm] ein Generator von [mm] $\langle [/mm] y [mm] \rangle$ [/mm] solange $i$ nicht durch die Gruppenordnung teilbar ist. Also kannst du jedes [mm] $y^b$ [/mm] auch als [mm] $y^{i c}$ [/mm] schreiben mit $c [mm] \in \IZ$.) [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de