www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppenordnung
Gruppenordnung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenordnung: Isomorphie
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 07.09.2009
Autor: jumape

Aufgabe
Wozu ist eine Gruppe der Ordnung m isomorph?

Ich würde sagen zu [mm] \IZ/m\IZ [/mm] oder zu [mm] \IZ/p_1\IZ x...x\IZ/p_k\IZ [/mm] mit [mm] m=p_1*p_2*....*p_k [/mm] und [mm] p_i [/mm] Primzahlen.

Ich mach mal ein kurzes Beispiel wo mein Problem ist:

Kann eine Gruppe der Ordnung 30 isomaorph zu... sein:
[mm] \IZ/60\IZ [/mm]  
[mm] \IZ/3\IZ \times\IZ/5\IZ \times\IZ/2^2\IZ [/mm]
[mm] \IZ/15\IZ \times\IZ/2^2\IZ [/mm]
[mm] \IZ/3\IZ \times\IZ/5\IZ \times\IZ/2\IZ \times\IZ/2\IZ [/mm]

Ich glaube dass jede Gruppe der Ordnug 30 zu einer der ersten beiden Möglichkeiten isomorph ist, und die anderen beiden nicht gehen. Stimmt das?

        
Bezug
Gruppenordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Mo 07.09.2009
Autor: felixf

Hallo!

> Wozu ist eine Gruppe der Ordnung m isomorph?

Ich vermute, du interessierst dich eher fuer abelsche Gruppen als fuer beliebige Gruppen?

> Ich würde sagen zu [mm]\IZ/m\IZ[/mm] oder zu [mm]\IZ/p_1\IZ x...x\IZ/p_k\IZ[/mm]
> mit [mm]m=p_1*p_2*....*p_k[/mm] und [mm]p_i[/mm] Primzahlen.

Im Allgemeinen gibt es noch mehr Moeglichkeiten. Schau doch mal []hier unter Klassifikation.

> Ich mach mal ein kurzes Beispiel wo mein Problem ist:
>  
> Kann eine Gruppe der Ordnung 30 isomaorph zu... sein:

Du meinst eher 60, oder? Die unten genannten Gruppen haben alle Ordnung 60.

(Die abelschen Gruppen der Ordnung 30 sind alle zyklisch.)

>  [mm]\IZ/60\IZ[/mm]  
> [mm]\IZ/3\IZ \times\IZ/5\IZ \times\IZ/2^2\IZ[/mm]
>  [mm]\IZ/15\IZ \times\IZ/2^2\IZ[/mm]
> [mm]\IZ/3\IZ \times\IZ/5\IZ \times\IZ/2\IZ \times\IZ/2\IZ[/mm]
>  
> Ich glaube dass jede Gruppe der Ordnug 30 zu einer der
> ersten beiden Möglichkeiten isomorph ist, und die anderen
> beiden nicht gehen. Stimmt das?  

Die erste, zweite und dritte Moeglichkeit sind jeweils zueinander isomorph. (Kennst du vielleicht folgende Aussage: [mm] $\IZ/n\IZ \times \IZ/m\IZ \cong \IZ/nm\IZ$ [/mm] genau dann, wenn $n$ und $m$ teilerfremd sind. Dies ist eine Art Spezialfall vom chinesischen Restsatz fuer ganze Zahlen; dieser gibt dir noch explizit einen Isomorphismus an.)

Moeglichkeit Nummer 4 ist nicht isomorph zu den ersten dreien. (Die ist isomorph zu [mm] $\IZ/30\IZ \times \IZ/2\IZ$.) [/mm]

Jede abelsche Gruppe der Ordnung 60 ist isomorph zu entweder den ersten dreien oder der vierten Moeglichkeit.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de