www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gruppentafel
Gruppentafel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppentafel: nicht-triviales Produkt?
Status: (Frage) beantwortet Status 
Datum: 20:48 So 15.04.2007
Autor: LittleStudi

Aufgabe
Geben Sie die multiplikative Gruppentafel eines Körpers mit 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales Prudukt in jeder nicht trivialen Zeile.

Also das könnte ich doch bspw. für den [mm] \IZ_{9} [/mm] machen der hat die Elemente 1- 8 das sind somit acht... muss ich dann jedes Element mit jedem multiplizieren bei der Gruppentafel

und was wäre bspw. so ein nicht-triviales Produkt???

Danke

        
Bezug
Gruppentafel: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 So 15.04.2007
Autor: unknown

Hallo,


nur kurz ein paar Bemerkungen.

> Geben Sie die multiplikative Gruppentafel eines Körpers mit
> 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales
> Prudukt in jeder nicht trivialen Zeile.
>  Also das könnte ich doch bspw. für den [mm]\IZ_{9}[/mm] machen der
> hat die Elemente 1- 8 das sind somit acht

Hmm, der [mm] $\IZ_9$ [/mm] ist kein Körper ($3$ ist Nullteiler). Es gibt zwar einen Körper mit neun Elementen, aber ich verstehe die Aufgabe eher so, dass der Körper acht Elemente haben soll (und nicht die multiplikative Gruppe).

> ...muss ich dann
> jedes Element mit jedem multiplizieren bei der
> Gruppentafel

Ja. Wenn Du allerdings bedenkst, dass die Multiplikation kommutativ ist, brauchst Du nur die Hälfte davon wirklich auszurechnen.

> und was wäre bspw. so ein nicht-triviales Produkt???

Ich würde darunter Produkte verstehen, bei denen kein Faktor das Null- oder das Einselement ist.


Hoffe, ich konnte Dir weiter helfen.


Bezug
        
Bezug
Gruppentafel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 So 15.04.2007
Autor: felixf

Hallo!

> Geben Sie die multiplikative Gruppentafel eines Körpers mit
> 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales
> Prudukt in jeder nicht trivialen Zeile.

>

>  Also das könnte ich doch bspw. für den [mm]\IZ_{9}[/mm] machen der
> hat die Elemente 1- 8 das sind somit acht...

Nein, du hast die $0$ vergessen, damit sind es neun...

Da $8 = [mm] 2^3$ [/mm] ist brauchst du ein unzerlegbares Polynom $f [mm] \in \IZ_2[x]$ [/mm] von Grad $3$; dann ist [mm] $\IZ_2[x]/(f)$ [/mm] ein Koerper mit [mm] $2^{\deg f} [/mm] = 8$ Elementen.

Zwei Elemente $g, h [mm] \in \IZ_2[x]/(f)$ [/mm] (dargestellt durch Polynome in [mm] $\IZ_2[x]$ [/mm] von Grad $< 3$) werden dann multipliziert, indem man $g h$ als Polynom in [mm] $\IZ_2[x]$ [/mm] berechnet und dann den Rest von $g h$ bei der Division durch $f$ nimmt.

(Man kann das auch etwas einfacher machen, indem man [mm] $\alpha$ [/mm] fuer die Restklasse von $x$ in [mm] $\IZ_2[x]/(f)$ [/mm] schreibt; dann gilt [mm] $f(\alpha) [/mm] = 0$, womit [mm] $\alpha^3 [/mm] = $ Polynom in [mm] $\alpha$ [/mm] von Grad [mm] $\le [/mm] 2$ ist. Dann kannst du zwei Elemente $a [mm] \alpha^2 [/mm] + b [mm] \alpha [/mm] + c$ und $d [mm] \alpha^2 [/mm] + e [mm] \alpha [/mm] + f$ aus [mm] $\IZ_2[x]/(f)$ [/mm] multiplizieren, indem du $(a [mm] \alpha^2 [/mm] + b [mm] \alpha [/mm] + c) (d [mm] \alpha^2 [/mm] + e [mm] \alpha [/mm] + f)$ erstmal formal ausrechnest und dann durch die Ersetzung [mm] $\alpha^3 [/mm] = $ Polynom in [mm] $\alpha$ [/mm] von Grad [mm] $\le [/mm] 2$ das Schritt fuer Schritt in etwas der Form $g [mm] \alpha^2 [/mm] + h [mm] \alpha [/mm] + i$ uebersetzt.

Beispiel $f = [mm] x^2 [/mm] + x + 1$ (nehmen wir mal Grad 2 :) ), das ist irreduzibel, und fuer [mm] $\alpha$ [/mm] gilt dann [mm] $\alpha^2 [/mm] = [mm] \alpha [/mm] + 1$ (beachte, dass in [mm] $\IZ_2$ [/mm] minus gleich plus ist). Wenn du also das Element [mm] $\alpha$ [/mm] mit dem Element [mm] $\alpha [/mm] + 1$ multiplizierst, hast du [mm] $\alpha (\alpha [/mm] + 1) = [mm] \alpha^2 [/mm] + [mm] \alpha [/mm] = [mm] (\alpha [/mm] + 1) + [mm] \alpha [/mm] = 2 [mm] \alpha [/mm] + 1 = 1$. Das waer zum Beispiel ein nicht-triviales Produkt. Ein triviales Produkt ist $1 [mm] \cdot [/mm] (1 + [mm] \alpha) [/mm] = 1 + [mm] \alpha$ [/mm] oder $0 [mm] \cdot \alpha [/mm] = 0$.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de