www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Gruppenverteilung
Gruppenverteilung < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:32 So 06.04.2008
Autor: neuern

Aufgabe
Eine Gruppe von vie rMädchen und vier Jungen wird zufällig in zwei gleich starke Gruppen aufgeteilt. Wie groß ist dsie WAhrscheinlichkeit, dass jede Gruppe gleich viele Jungen und Mädchen enthält?

Hallo,
komme bei dieser Aufgabe einfach nciht auf die Lösung. Sie erscheint (mir zumindest) sehr leicht, aber irgendwo hakt's dann doch.

Das ganze fängt schon mit dem Ergebnisraum an.
Ist dieser nun [mm] \vektor{8 \\ 2} [/mm] oder [mm] \vektor{8 \\ 4}* \vektor{8 \\ 4} [/mm]
und wie geht es dann weiter?

bin am verzweifeln :(



        
Bezug
Gruppenverteilung: richtige Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 So 06.04.2008
Autor: Adamantin

Meiner Meinung nach ändert sich an der Aufgabe nichts, wenn du das ganze so betrachtest, als würdest du nur eine Gruppe untersuchen, die andere ergibt sich ja automatisch. Damit hättest du einen Ereignisraum [mm] \Omega [/mm] von 8 Elementen, nämlich 4 Mädchen und 4 Jungs. Dann ist die Frage nach der Wahrscheinlichkeit gestellt, ein 4er-Tupel zu erhalten, in dem zwei Mädchen und zwei Jungs sind, die andere Gruppe ergibt sich ja analog. Also würde ich einfach rechnen:

[mm]P(E)=\bruch{{4 \choose 2}*{4 \choose 2}}{{8 \choose 4}}[/mm]

Damit würde man die Wahrscheinlichkeit ausrechnen, dass 4 von 8 Personen gezogen werden, wobei zwei von 4 Mädchen und zwei von 4 Jungs "stammen", die Reihenfolge ist ja unwichtig. Aber ist nur ein Vorschlag

So bin mir jetzt ziemlich sicher, dass das stimmt.

Alternativ führt dieser Weg zum selben Ergebnis:

Du hast 8 junge Leute, von denen 4 Jungs und 4 Mädchen sind.
Du möchtest eine Auswahl, die z.B. so aussieht:
{JJMM}
Dann ist die Wahrscheinlichkeit dafür, da es ja ein Ziehen ohne Zurücklegen ist:
[mm]\bruch{4}{8}*\bruch{3}{7}*\bruch{4}{6}*\bruch{3}{5}=\bruch{3}{35}[/mm]

Nun haben wir aber nur einen einzigen Fall berechnet und nicht etwa auch {JMJM} etc.
Da die Anzahl aller Möglichkeiten [mm]{4 \choose 2}[/mm] beträgt, lautet die Endwahrscheinlichkeit

[mm]{4 \choose 2}*\bruch{3}{35}=\bruch{18}{35}[/mm]


Bezug
                
Bezug
Gruppenverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 So 06.04.2008
Autor: neuern

ok, vielen dank - ist nachvollziehbar

Bezug
        
Bezug
Gruppenverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 So 06.04.2008
Autor: zahllos

Hallo,

stelle dir eine Urne mit vier schwarzen und vier weißen Kugeln vor. Aus dieser wird viermal ohne Zurücklegen gezogen. Dann ist die Wahrscheinlichkeit genau zwei schwarze Kugel zu erwischen:

P("zwei schwarze") = [mm] \frac{\vektor{4 \\ 2}\vektor{4 \\ 2}}{\vektor{8 \\ 4}} \sim [/mm] 0,514

Dasselbe gilt für vier Jungen und vier Mädchen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de