Gute Konditionierung < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Die Aufgabe [mm] \phi(x,y)=xy [/mm] ist gut konditioniert in dem Sinne, dass für [mm] x,y \in \IR [/mm] ohne 0 und folglich [mm] \phi(x,y) \not= 0 [/mm] sowie Störungen [mm] x', y' \in \IR [/mm] die relativen Fehler [mm] \epsilon_\phi = \bruch{|\phi(x',y')-\phi(x,y)|}{|\phi(x,y)|}, \epsilon_x= \bruch{|x'-x|}{|x|},\epsilon_y= \bruch{|y'-y|}{|y|} [/mm] die Abschätzung [mm] \epsilon_\phi \le \epsilon_x + \epsilon_y + \epsilon_x \epsilon_y [/mm] erfüllen. Sind [mm] \epsilon_x [/mm] und [mm] \epsilon_y [/mm] klein, ist demnach der relative Fehler [mm] \epsilon_\phi [/mm] ebenfalls klein. |
Hallo!
Ich sitze am Verständnis des Beweises für diesen Satz. Die Lösung ist folgende:
Es gilt:
[mm] \epsilon_\phi = \bruch{|x'y'-xy|}{|xy|}
= \bruch{|(x'-x)y'+x(y'-y)|}{|xy|}
\le \bruch{|x'-x|}{|x|} \bruch{|y'-y+y|}{|y|}+ \bruch{|y'-y|}{|y|} [/mm]
und dies impliziert die Behauptung.
Dabei habe ich folgendes Problem:
In der letzten Zeile steht noch: [mm] \bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|}+ \bruch{|y'-y|}{|y|} [/mm] und davon soll die Behauptung impliziert werden, nämlich, dass gilt: [mm] \epsilon_\phi = \bruch{|x'y'-xy|}{|xy|} \le \bruch{|x'-x|}{|x|} + \bruch{|y'-y|}{|y|} + \bruch{|x'-x||y'-y|}{|xy|} [/mm]
Diesen Schritt verstehe ich nicht: Zwar ist mir klar, dass der letzte Bruch größer oder gleich 0 ist, daher wäre: [mm] \bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|}+ \bruch{|y'-y|}{|y|} \le \bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|} + \bruch{|y'-y|}{|y|} + \bruch{|x'-x||y'-y|}{|xy|} [/mm]. Wohin verschwindet aber [mm] \bruch{|y'|}{|y|} [/mm]?
Ich stehe hier wohl gehörig auf dem Schlauch. Kann mir da jemand runter helfen? ^^
Liebe Grüße,
Lily
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:47 Mi 29.06.2016 | Autor: | hippias |
> Die Aufgabe [mm]\phi(x,y)=xy[/mm] ist gut konditioniert in dem
> Sinne, dass für [mm]x,y \in \IR[/mm] ohne 0 und folglich [mm]\phi(x,y) \not= 0[/mm]
> sowie Störungen [mm]x', y' \in \IR[/mm] die relativen Fehler
> [mm]\epsilon_\phi = \bruch{|\phi(x',y')-\phi(x,y)|}{|\phi(x,y)|}, \epsilon_x= \bruch{|x'-x|}{|x|},\epsilon_y= \bruch{|y'-y|}{|y|}[/mm]
> die Abschätzung [mm]\epsilon_\phi \le \epsilon_x + \epsilon_y + \epsilon_x \epsilon_y[/mm]
> erfüllen. Sind [mm]\epsilon_x[/mm] und [mm]\epsilon_y[/mm] klein, ist
> demnach der relative Fehler [mm]\epsilon_\phi[/mm] ebenfalls klein.
> Hallo!
>
> Ich sitze am Verständnis des Beweises für diesen Satz.
> Die Lösung ist folgende:
>
> Es gilt:
> [mm]\epsilon_\phi = \bruch{|x'y'-xy|}{|xy|}
= \bruch{|(x'-x)y'+x(y'-y)|}{|xy|}
\le \bruch{|x'-x|}{|x|} \bruch{|y'-y+y|}{|y|}+ \bruch{|y'-y|}{|y|}[/mm]
>
> und dies impliziert die Behauptung.
>
> Dabei habe ich folgendes Problem:
> In der letzten Zeile steht noch: [mm]\bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|}+ \bruch{|y'-y|}{|y|}[/mm]
> und davon soll die Behauptung impliziert werden, nämlich,
> dass gilt: [mm]\epsilon_\phi = \bruch{|x'y'-xy|}{|xy|} \le \bruch{|x'-x|}{|x|} + \bruch{|y'-y|}{|y|} + \bruch{|x'-x||y'-y|}{|xy|}[/mm]
>
> Diesen Schritt verstehe ich nicht: Zwar ist mir klar, dass
> der letzte Bruch größer oder gleich 0 ist, daher wäre:
> [mm]\bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|}+ \bruch{|y'-y|}{|y|} \le \bruch{|x'-x|}{|x|} \bruch{|y'|}{|y|} + \bruch{|y'-y|}{|y|} + \bruch{|x'-x||y'-y|}{|xy|} [/mm].
> Wohin verschwindet aber [mm]\bruch{|y'|}{|y|} [/mm]?
Es ist [mm] $\frac{|y'|}{|y|}= \frac{|y'-y+y|}{|y|}\leq \epsilon_{y}+1$. [/mm] Damit gehe in die Ungleichung.
>
> Ich stehe hier wohl gehörig auf dem Schlauch. Kann mir da
> jemand runter helfen? ^^
>
> Liebe Grüße,
> Lily
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:04 Do 30.06.2016 | Autor: | Mathe-Lily |
Achso, stimmt, das macht Sinn und ich habe es glatt übersehen! Vielen Dank
|
|
|
|