www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Häfungspunkte
Häfungspunkte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häfungspunkte: noch ne Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 28.07.2005
Autor: Bastiane

Hallo nochmal!
Leider habe ich noch eine Aufgabe ohne jegliche Idee:

Sei x eine vorgegebene reelle Zahl. Die Folge [mm] (a_n(x))_{n\in\IN} [/mm] sei definiert durch [mm] a_n(x):=nx-entier(nx). [/mm] Man beweise: Ist x rational, so hat die Folge nur endlich viele Häufungspunkte; ist x irrational, so ist jede Zahl a mit [mm] 0\le a\le [/mm] 1 Häufungspunkt der Folge.

Dabei ist entier x oder [x] die eindeutig bestimmte ganze Zahl n mit [mm] n\le [/mm] x<n+1.

Die Begriffe sind mir eigentlich klar, aber ich weiß halt nicht, wie ich hier anfangen soll... Was kann ich denn über entier x aussagen, wenn x rational oder irrational ist?

Viele Grüße
Bastiane
[cap]

        
Bezug
Häfungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 28.07.2005
Autor: Hanno

Hallo Christiane!

Eine Anmerkung vorneweg: die Funktion gibt genau den gebrochenen Anteil von [mm] $n\cdot [/mm] x$ zurück, anschaulich also das, was in der Dezimalschreibweise hinter dem Komma folgt.

Nehmen wir an, $x$ sei rational, d.h. [mm] $x=\frac{p}{q}$ [/mm] für ganzzahlige [mm] $p,q\in\IZ, [/mm] (p,q)=1$. Für beliebiges $n$ mit [mm] $n=k\cdot [/mm] q+r, [mm] r\in\{0,1,...,q-1\}$ [/mm] ist dann [mm] $a_n( x)=k+\frac{r}{q}-k=\frac{r}{q}$. [/mm] Die Folge [mm] $(a_n(x))_{n\in\IN}$ [/mm] nimmt folglich nur Werte aus [mm] $M:=\left\{0,\frac{1}{q},...,\frac{q-1}{q}\right\}$ [/mm] an. Für beliebiges [mm] $i\in\{0,1,2,...,q-1\}$ [/mm] ist nun ferner [mm] $a_{k\cdot q+i}(x)=\frac{i}{q}$, [/mm] d.h. die Elemente aus $M$ sind tatsächlich Häufungspunkte von [mm] $(a_n(x))_{n\in \IN}$. [/mm] Weitere Häufungspunkte kann es nicht geben; sei nämlich [mm] $x\in \IR$ [/mm] mit [mm] $x\notin [/mm] M$, so existiert ein [mm] $\epsilon\in\IR^{+}$ [/mm] mit [mm] $U_{\epsilon}(x)\cap M=\emptyset$; [/mm] also... ? Schaffst du es, den Beweis selbst zu einem Ende zu führen?

Nehmen wir nun an, $x$ sei irrational. Alle Folgenglieder aus [mm] $(a_n(x))_{n\in\IN}$ [/mm] sind einander verschieden, da $x$ sonst rational wäre. Ferner ist die Folge [mm] $(a_n(x))_{n\in \IN}$ [/mm] beschränkt, es existiert folglich eine konvergente Teilfolge [mm] $(a'_n(x))_{n\in\IN}$, [/mm] die gegen den Grenzwert [mm] $a'\in [/mm] (0,1)$ konvergiere. Sei nun [mm] $c\in(0,1)$ [/mm] beliebig gewählt. Es ist zu zeigen, dass $c$ Häufungspunkt von [mm] $(a_n(x))_{n\in\IN}$ [/mm] ist. Dazu ist es hinreichend zu zeigen, dass für alle [mm] $\epsilon\in\IR^{+}$ [/mm] wenigstens ein Folgenglied in [mm] $U_{\epsilon}(c)$ [/mm] liegt. Sei also [mm] $\epsilon\in\IR^{+}$ [/mm] beliebig gewählt. Da [mm] $(a'_n(x))_{n\in \IN}$ [/mm] konvergiert, ist [mm] $(a'_n(x))_{n\in\IN}$ [/mm] eine Cauchy-Folge, folglich existieren zwei Indizes [mm] $n_0,n_1\in\IN$ [/mm] so, dass [mm] $\vert a_{n_0}(x)-a_{n_1}(x)\vert [/mm] = [mm] a_{\vert n_0-n_1\vert }(x)\in (0,\epsilon)$ [/mm] liegt. Multiplikation mit einem geeigneten Vielfachen [mm] $\lambda\in\IN$ [/mm] führt zu [mm] $a_{\lambda\vert n_0-n_1\vert}(x)\in U_\epsilon [/mm] (c)$. Kannst du dir selbst klar machen, weshalb es ein solches Vielfaches geben muss? Warum hätte das auch mit [mm] $a_{\vert n_0-n_1\vert}(x)\in U_{2\epsilon} [/mm] (c)$ geklappt?


Ich hoffe ich habe mich nicht verhaspelt.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de