www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte
Häufungspunkte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 11.02.2016
Autor: rsprsp

Aufgabe
Bestimmen Sie alle Häufungspunkte der Folgen
[mm] (a_n)_{n\in\IN)} [/mm] mit

[mm] (a_n) [/mm] = [mm] cos(\bruch{\pi}{2}n) [/mm]

[mm] (a_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm] + [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]

[mm] (a_n) [/mm] = [mm] cos(\bruch{\pi}{2}n) [/mm]

[mm] a_n [/mm] = { [mm] cos(\bruch{\pi}{2}),cos(\pi),cos(\bruch{3\pi}{2}),cos(2\pi)... [/mm] }
[mm] a_n [/mm] = {0,-1,0,1,0,-1,0,1,...}

d.h die Häufungspunkte sind
a_4k = 0
[mm] a_{4k+1} [/mm] = -1
[mm] a_{4k+2} [/mm] = 0
[mm] a_{4k+3} [/mm] = 1


----


[mm] (a_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm] + [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]
[mm] (a_n) [/mm] = [mm] (b_n) [/mm] + [mm] (c_n) [/mm]

[mm] (b_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm]
[mm] (b_n) [/mm] = { [mm] sin(\bruch{\pi}{3}), sin(\bruch{2\pi}{3}), sin(\pi),... [/mm] }

d.h.
[mm] sin(\bruch{\pi}{3}) [/mm] = [mm] sin(\bruch{2\pi}{3}) [/mm] = [mm] sin(\bruch{7\pi}{3}) [/mm] = [mm] sin(\bruch{8\pi}{3}) [/mm] = ...
[mm] sin(\pi) [/mm] = [mm] sin(2\pi) [/mm] = [mm] sin(3\pi) [/mm] = ...
[mm] sin(\bruch{4\pi}{3}) [/mm] = [mm] sin(\bruch{5\pi}{3}) [/mm] = [mm] sin(\bruch{10\pi}{3}) [/mm] = [mm] sin(\bruch{11\pi}{3}) [/mm] = ...
also:
b_5k = [mm] b_{5k+1} [/mm]
[mm] b_{5k+2} [/mm]
[mm] b_{5k+3} [/mm] = [mm] b_{5k+4} [/mm]

Kann man das irgendwie anders schreiben???

[mm] c_n [/mm] = [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]
[mm] c_n [/mm] ist hier eine Nullfolge damit hat es einen Häufungspunkt bei 0, oder?
[mm] \limes_{n\rightarrow\infty} \bruch{(-1)^n n^2+2}{2n^2+1} [/mm] = 0 ?

        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 11.02.2016
Autor: statler

Hallo!

>  [mm]c_n[/mm] ist hier eine
> Nullfolge damit hat es einen Häufungspunkt bei 0, oder?

Hier nicht, und woanders auch nicht.
Gruß
Dieter

Bezug
                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Do 11.02.2016
Autor: rsprsp

Na gut, sie läuft gegen im negativen gegen -0,5 bzw im positiven 0,5 also für
[mm] c_{2k} [/mm] = 0,5 und
[mm] c_{2k+1} [/mm] = -0,5

sind es jetzt die Häufungspunkte?

Bezug
                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Do 11.02.2016
Autor: fred97


> Na gut, sie läuft gegen im negativen gegen -0,5 bzw im
> positiven 0,5 also für
>  [mm]c_{2k}[/mm] = 0,5 und
>  [mm]c_{2k+1}[/mm] = -0,5
>  
> sind es jetzt die Häufungspunkte?

So kannst Du das nicht formulieren !

Wir haben:

$ [mm] c_n [/mm] = [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm] $

Dann ist

    [mm] c_{2k}=\bruch{4k^2+2}{8k^2+1}. [/mm]

Somit hat die Teilfolge  [mm] (c_{2k}) [/mm] den Grenzwert [mm] \bruch{1}{2} [/mm]

Weiter ist

    [mm] $c_{2k-1}=-\bruch{4k^2-4k+3}{8k^2-8k+3}.$ [/mm]

Somit hat die Teilfolge  [mm] (c_{2k-1}) [/mm] den Grenzwert [mm] $-\bruch{1}{2}$. [/mm]

[mm] (c_n) [/mm] hat also genau die Häufungspunkte [mm] \bruch{1}{2} [/mm] und  [mm] $-\bruch{1}{2}$. [/mm]

FRED



Bezug
                                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Do 11.02.2016
Autor: rsprsp

Ja wollte ich auch, war nur so kurz geschrieben.

Also ich habe jetzt die Häufungspunkte von [mm] b_n [/mm]
[mm] b_{5k} [/mm] = [mm] sin(\bruch{\pi}{3}) [/mm] = [mm] b_{5k+1} [/mm]
[mm] b_{5k+2} [/mm] = 0
[mm] b_{5k+3} [/mm] = [mm] sin(\bruch{4\pi}{3}) [/mm] = [mm] b_{5k+4} [/mm]

und

[mm] c_{2k} [/mm] = 0,5
[mm] c_{2k+1} [/mm] = -0,5

d.h. die Häufungspunkte sind
[mm] sin(\bruch{\pi}{3})+0,5, sin(\bruch{\pi}{3})-0,5, [/mm] 0,5 , -0,5 , [mm] sin(\bruch{4\pi}{3})+0,5, sin(\bruch{4\pi}{3})-0,5 [/mm]

Bezug
                                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Do 11.02.2016
Autor: abakus

Nun solltest du nur noch konkret angeben, was [mm] $sin\frac{\pi}{3}$ [/mm] konkret ist.

Bezug
                                                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 11.02.2016
Autor: rsprsp

Das ist rund 0.86602540378 aber da wir kein Taschenrechner benutzen dürfen sollte ich das gar nicht ausrechnen können.

Bezug
                                                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Do 11.02.2016
Autor: abakus


> Das ist rund 0.86602540378

Das sind GENAU [mm] $\frac{\sqrt{3}}{2}$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de