www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungswerte
Häufungswerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Fr 28.07.2006
Autor: Raingirl87

Aufgabe
(2+ [mm] \bruch{n+1}{n})^{(-1)} [/mm] ^(k+1)  für n=3k+1

Hallo!

Kann mir evtl. jemand erklären, wie ich Häufungswerte bestimme? Also größten und kleinsten Häufungswert...
Habe z.B. die oben aufgeführte Aufgabe.
Weiß aber absolut nicht, was ich da machen muss. :(

Danke schonmal!
LG, Raingirl87

        
Bezug
Häufungswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Fr 28.07.2006
Autor: Franzie

Hallöchen!

Mache dir zunächst einmal klar, was ein Haüfungswert überhaupt ist. Ein solcher Häufungswert a liegt nämlich dann vor, wenn es eine Teilfolge [mm] (x_{n}_{k}) [/mm] von [mm] (x_{n}) [/mm] gibt mit lim [mm] (x_{n}_{k}) [/mm] =a für n gegen unendlich.
Du musst  also jetzt aus deiner gegebenen Folge Teilfolgen bilden und deren lim untersuchen. Das ergibt dann die Häufungswerte. Vorher wäre es vielleicht ratsam, deine gegebene Folge auf den lim zu untersuchen für n gegen  unendlich. Denn sollte es einen solchen geben, ist dieser lim gleich dem Häufungswert und es gibt im Falle der KOnvergenz auch nur einen Häufungswert.

liebe Grüße

Bezug
                
Bezug
Häufungswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mo 31.07.2006
Autor: Raingirl87

Ich verstehe trotzdemnicht, was ich nun genau machenmuss um die Häufungswerte zu ermitteln. *heul*
Könnte es mir vielleicht jemand an einem Beispiel oder der oeben genannten Aufgabe erklären?
Wäre echt super lieb...
DANKE!

LG, Raingirl87

Bezug
                        
Bezug
Häufungswerte: etwas Hilfe
Status: (Antwort) fertig Status 
Datum: 13:28 Mo 31.07.2006
Autor: statler

Hallo!

Ist das so gemeint:

(2 + [mm] \bruch{n+1}{n})^{(-1)^{(k+1)}} [/mm] für n = 3k + 1

Das ist gleich

(3 + [mm] \bruch{1}{n})^{(-1)^{(k+1)}} [/mm] für n = 3k + 1

oder eingesetzt

(3 + [mm] \bruch{1}{3k+1})^{(-1)^{(k+1)}} [/mm]

Aber wenn du das für gerade und ungerade k untersuchst, findest du, daß das ungefähr bei 3 (für ungerade k) und ungefähr bei 1/3 (für gerade k) liegt.

Dann sind das deine Häufungspunkte, für noch einen ist sozusagen kein Platz.

Das müßtest du jetzt noch schön mit [mm] \varepsilon [/mm] und [mm] \delta [/mm] hinschreiben!

Gruß aus HH-Harburg
Dieter
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de